1.基于python的单细胞数据预处理-降维可视化

2024-05-11 18:36

本文主要是介绍1.基于python的单细胞数据预处理-降维可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 降维的背景
  • PCA
  • t-sne
  • UMAP
  • 检查质量控制中的指标

参考:
[1] https://github.com/Starlitnightly/single_cell_tutorial
[2] https://github.com/theislab/single-cell-best-practices

降维的背景

虽然特征选择已经减少了维数,但为了可视化,我们需要更直观的降维方法。降维将高维数据嵌入到低维空间中。低维表示仍然捕获数据的基本结构,同时尽可能少地持有维度。比如下图,我们将三维对象可视化为投影到二维空间中。

fig1

过去的研究独立比较了10种不同的降维方法的稳定性,准确性和计算成本。他们建议使用t-分布随机邻居嵌入(t-SNE),因为它产生了最佳的性能。统一流形逼近和投影(UMAP)显示出最高的稳定性,并且最好地分离了原始细胞群体。在这种情况下,值得一提的另一种降维方法是主成分分析(PCA),它仍然被广泛使用。

首先我们加载来自特征选择处理的数据:

import omicverse as ov
import scanpy as scov.ov_plot_set()adata = sc.read("./data/s4d8_preprocess.h5ad")
print(adata)
print(adata.X.max()) # 10.989398

在标准流程中,按照特征选择出的特征切片得到新矩阵后,我们还需要对新矩阵的计数进行scale(为了利于降维)。在omicverse中,我们将scale后的值存放进adata.layer,而不是像scanpy一样默认取代adata.X。但是注意,没有任何的证据表明,数据经过scale后会取得更好的差异基因分析结果,若盲目地使用scale后的计数值,还可能会导致使用dotplot或者violinplot中忽略了基因自身的特征信息,差异基因分析最好是使用缩放前的X

比如我们关注的一个基因A的表达值在17-20区间,而基因B的表达值在0-3的区间,经过scale后,由于平均值被缩放成了0,基因A和基因B都在-2-2的区间范围内,这一定程度上失去了基因A表达量高的信息。故scale对差异基因分析似乎是不利的。

scale如下:

# 缩放
ov.pp.scale(adata,max_value=10)
print(adata)"""
AnnData object with n_obs × n_vars = 14814 × 2000obs: 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_20_genes', 'total_counts_mt', 'log1p_total_counts_mt', 'pct_counts_mt', 'total_counts_ribo', 'log1p_total_counts_ribo', 'pct_counts_ribo', 'total_counts_hb', 'log1p_total_counts_hb', 'pct_counts_hb', 'outlier', 'mt_outlier', 'scDblFinder_score', 'scDblFinder_class'var: 'gene_ids', 'feature_types', 'genome', 'mt', 'ribo', 'hb', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts', 'n_cells', 'percent_cells', 'robust', 'mean', 'var', 'residual_variances', 'highly_variable_rank', 'highly_variable_features'uns: 'hvg', 'layers_counts', 'log1p'layers: 'counts', 'soupX_counts', 'scaled'
"""

可以发现adata的layers层多出了一个scaled,这就是我们经过scale后的数据。

PCA

基于scaled的数据进行PCA:

ov.pp.pca(adata,layer='scaled',n_pcs=50)
print(adata)

可以发现,adata.obsm层里多出了一个scaled|original|X_pca,这代表了我们使用的是layers中的scaled层数据进行的pca计算,当然我们也可以使用counts进行pca计算,效果如下:

ov.pp.pca(adata,layer='counts',n_pcs=50)
print(adata)

使用embedding函数,来对比基于两种不同的layers计算所得出的pca的差异:

import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='scaled|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='counts|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_pca.png')

fig2

我们会发现基于scaled的pca结果,第一主成分和第二主成分有着相似的数量级,而基于counts的pca结果,第一主成分和第二主成分的数量级则有所差异,这对于后续的2维投影(比如t-sne和umap)可能会有显著的影响。

t-sne

t-SNE 是一种基于图的、非线性的降维技术,它将高维数据投影到 2D 或 3D 分量上。该方法基于数据点之间的高维欧几里得距离定义了一个高斯概率分布。随后,使用 t 分布在低维空间中重建概率分布,其中嵌入通过梯度下降进行优化。

分别对scaled的pca和counts的pca进行tsne:

sc.tl.tsne(adata, use_rep="scaled|original|X_pca")
# tsne函数默认是存放在adata.obsm['X_tsne']中的,我们将其存放在adata.obsm['X_tsne_scaled']中来区分counts的结果
adata.obsm['X_tsne_scaled']=adata.obsm['X_tsne']
sc.tl.tsne(adata, use_rep="counts|original|X_pca")
adata.obsm['X_tsne_counts']=adata.obsm['X_tsne']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_tsne_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_tsne_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_tsne.png')

fig3

UMAP

UMAP 是一种基于图的、非线性的降维技术,原理上与 t-SNE 类似。它构建了数据集的高维图表示,并优化低维图表示,使其在结构上尽可能地与原始图相似。

我们首先基于PCA的结果,在单细胞数据上构建一个邻域图再运行umap:

sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='scaled|original|X_pca')
sc.tl.umap(adata)
# umap函数默认是存放在adata.obsm['X_umap']中的,我们将其存放在adata.obsm['X_umap_scaled']中来区分counts的结果
adata.obsm['X_umap_scaled']=adata.obsm['X_umap']sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='counts|original|X_pca')
sc.tl.umap(adata)
adata.obsm['X_umap_counts']=adata.obsm['X_umap']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_umap_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_umap_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_umap.png')

fig4

检查质量控制中的指标

现在我们可以在scaled数据的UMAP中检查之前的质量控制指标,一般检查三个指标:total_counts,n_genes_by_counts,pct_counts_mt。

如果前面使用的是omicverse.pp.qc,那么我们将直接得到nUMIs,detected_genes,mito_perc三个变量,如果使用的是scanpy进行的质控,那么得到的将是total_counts,n_genes_by_counts 和 pct_counts_mt 三个变量。

我们使用numpy中的log2对数化,将数据可视化区间缩小,同时,我们定义最大最小值来衡量我们的数据质量,我们希望total_counts大于250,250的对数值是7.96,所以我们最小值设定为8,最大值则定义为30,000,即15,而线粒体的比例则在0-100的范围内。

import numpy as np
adata.obs['log2_nUMIs']=np.log2(adata.obs['total_counts'])
adata.obs['log2_nGenes']=np.log2(adata.obs['n_genes_by_counts'])
ov.utils.embedding(adata,basis='X_umap_scaled',color=['log2_nUMIs','log2_nGenes','pct_counts_mt'],title=['log2#(nUMIs)','log2#(nGenes)','Mito_Perc'],vmin=[0,0,0],vmax=[15,15,100],show=False,frameon='small',)
plt.savefig('./result/2-6_qc.png')

理想情况如下图,total_counts(全部高亮),n_genes_by_counts(全部高亮),pct_counts_mt(全部不高亮)。
fig5

然后保存数据用于后续分析:

adata.write_h5ad('./data/s4d8_dimensionality_reduction.h5ad', compression='gzip')

这篇关于1.基于python的单细胞数据预处理-降维可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980327

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.