1.基于python的单细胞数据预处理-降维可视化

2024-05-11 18:36

本文主要是介绍1.基于python的单细胞数据预处理-降维可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 降维的背景
  • PCA
  • t-sne
  • UMAP
  • 检查质量控制中的指标

参考:
[1] https://github.com/Starlitnightly/single_cell_tutorial
[2] https://github.com/theislab/single-cell-best-practices

降维的背景

虽然特征选择已经减少了维数,但为了可视化,我们需要更直观的降维方法。降维将高维数据嵌入到低维空间中。低维表示仍然捕获数据的基本结构,同时尽可能少地持有维度。比如下图,我们将三维对象可视化为投影到二维空间中。

fig1

过去的研究独立比较了10种不同的降维方法的稳定性,准确性和计算成本。他们建议使用t-分布随机邻居嵌入(t-SNE),因为它产生了最佳的性能。统一流形逼近和投影(UMAP)显示出最高的稳定性,并且最好地分离了原始细胞群体。在这种情况下,值得一提的另一种降维方法是主成分分析(PCA),它仍然被广泛使用。

首先我们加载来自特征选择处理的数据:

import omicverse as ov
import scanpy as scov.ov_plot_set()adata = sc.read("./data/s4d8_preprocess.h5ad")
print(adata)
print(adata.X.max()) # 10.989398

在标准流程中,按照特征选择出的特征切片得到新矩阵后,我们还需要对新矩阵的计数进行scale(为了利于降维)。在omicverse中,我们将scale后的值存放进adata.layer,而不是像scanpy一样默认取代adata.X。但是注意,没有任何的证据表明,数据经过scale后会取得更好的差异基因分析结果,若盲目地使用scale后的计数值,还可能会导致使用dotplot或者violinplot中忽略了基因自身的特征信息,差异基因分析最好是使用缩放前的X

比如我们关注的一个基因A的表达值在17-20区间,而基因B的表达值在0-3的区间,经过scale后,由于平均值被缩放成了0,基因A和基因B都在-2-2的区间范围内,这一定程度上失去了基因A表达量高的信息。故scale对差异基因分析似乎是不利的。

scale如下:

# 缩放
ov.pp.scale(adata,max_value=10)
print(adata)"""
AnnData object with n_obs × n_vars = 14814 × 2000obs: 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_20_genes', 'total_counts_mt', 'log1p_total_counts_mt', 'pct_counts_mt', 'total_counts_ribo', 'log1p_total_counts_ribo', 'pct_counts_ribo', 'total_counts_hb', 'log1p_total_counts_hb', 'pct_counts_hb', 'outlier', 'mt_outlier', 'scDblFinder_score', 'scDblFinder_class'var: 'gene_ids', 'feature_types', 'genome', 'mt', 'ribo', 'hb', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts', 'n_cells', 'percent_cells', 'robust', 'mean', 'var', 'residual_variances', 'highly_variable_rank', 'highly_variable_features'uns: 'hvg', 'layers_counts', 'log1p'layers: 'counts', 'soupX_counts', 'scaled'
"""

可以发现adata的layers层多出了一个scaled,这就是我们经过scale后的数据。

PCA

基于scaled的数据进行PCA:

ov.pp.pca(adata,layer='scaled',n_pcs=50)
print(adata)

可以发现,adata.obsm层里多出了一个scaled|original|X_pca,这代表了我们使用的是layers中的scaled层数据进行的pca计算,当然我们也可以使用counts进行pca计算,效果如下:

ov.pp.pca(adata,layer='counts',n_pcs=50)
print(adata)

使用embedding函数,来对比基于两种不同的layers计算所得出的pca的差异:

import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='scaled|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='counts|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_pca.png')

fig2

我们会发现基于scaled的pca结果,第一主成分和第二主成分有着相似的数量级,而基于counts的pca结果,第一主成分和第二主成分的数量级则有所差异,这对于后续的2维投影(比如t-sne和umap)可能会有显著的影响。

t-sne

t-SNE 是一种基于图的、非线性的降维技术,它将高维数据投影到 2D 或 3D 分量上。该方法基于数据点之间的高维欧几里得距离定义了一个高斯概率分布。随后,使用 t 分布在低维空间中重建概率分布,其中嵌入通过梯度下降进行优化。

分别对scaled的pca和counts的pca进行tsne:

sc.tl.tsne(adata, use_rep="scaled|original|X_pca")
# tsne函数默认是存放在adata.obsm['X_tsne']中的,我们将其存放在adata.obsm['X_tsne_scaled']中来区分counts的结果
adata.obsm['X_tsne_scaled']=adata.obsm['X_tsne']
sc.tl.tsne(adata, use_rep="counts|original|X_pca")
adata.obsm['X_tsne_counts']=adata.obsm['X_tsne']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_tsne_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_tsne_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_tsne.png')

fig3

UMAP

UMAP 是一种基于图的、非线性的降维技术,原理上与 t-SNE 类似。它构建了数据集的高维图表示,并优化低维图表示,使其在结构上尽可能地与原始图相似。

我们首先基于PCA的结果,在单细胞数据上构建一个邻域图再运行umap:

sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='scaled|original|X_pca')
sc.tl.umap(adata)
# umap函数默认是存放在adata.obsm['X_umap']中的,我们将其存放在adata.obsm['X_umap_scaled']中来区分counts的结果
adata.obsm['X_umap_scaled']=adata.obsm['X_umap']sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='counts|original|X_pca')
sc.tl.umap(adata)
adata.obsm['X_umap_counts']=adata.obsm['X_umap']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_umap_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_umap_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_umap.png')

fig4

检查质量控制中的指标

现在我们可以在scaled数据的UMAP中检查之前的质量控制指标,一般检查三个指标:total_counts,n_genes_by_counts,pct_counts_mt。

如果前面使用的是omicverse.pp.qc,那么我们将直接得到nUMIs,detected_genes,mito_perc三个变量,如果使用的是scanpy进行的质控,那么得到的将是total_counts,n_genes_by_counts 和 pct_counts_mt 三个变量。

我们使用numpy中的log2对数化,将数据可视化区间缩小,同时,我们定义最大最小值来衡量我们的数据质量,我们希望total_counts大于250,250的对数值是7.96,所以我们最小值设定为8,最大值则定义为30,000,即15,而线粒体的比例则在0-100的范围内。

import numpy as np
adata.obs['log2_nUMIs']=np.log2(adata.obs['total_counts'])
adata.obs['log2_nGenes']=np.log2(adata.obs['n_genes_by_counts'])
ov.utils.embedding(adata,basis='X_umap_scaled',color=['log2_nUMIs','log2_nGenes','pct_counts_mt'],title=['log2#(nUMIs)','log2#(nGenes)','Mito_Perc'],vmin=[0,0,0],vmax=[15,15,100],show=False,frameon='small',)
plt.savefig('./result/2-6_qc.png')

理想情况如下图,total_counts(全部高亮),n_genes_by_counts(全部高亮),pct_counts_mt(全部不高亮)。
fig5

然后保存数据用于后续分析:

adata.write_h5ad('./data/s4d8_dimensionality_reduction.h5ad', compression='gzip')

这篇关于1.基于python的单细胞数据预处理-降维可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980327

相关文章

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.