1.基于python的单细胞数据预处理-特征选择

2024-05-11 08:12

本文主要是介绍1.基于python的单细胞数据预处理-特征选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 特征选择背景
  • 基于基因离散度
  • 基于基因归一化方差
  • 基于基因皮尔森近似残差
  • 特征选择总结

参考:
[1] https://github.com/Starlitnightly/single_cell_tutorial
[2] https://github.com/theislab/single-cell-best-practices

特征选择背景

现在已经获得了经过归一化的测序数据,其保留了细胞异质性,同时削弱了测量误差。统计发现,一个细胞表达的基因大约是3000个左右。这意味着测序数据中的一大部分基因是0计数。对于细胞亚型的研究,大部分0计数基因都在这些细胞亚型中,因此,预处理还包含特征选择,可以排除这些不具备分析意义的基因。

基因特征选择一般有三种方法:基于基因离散度,基于基因归一化方差,基于基因的皮尔森残差。

基于基因离散度

在传统的分析流程中,我们会采用基于基因离散度的方式去计算高变基因,一般来说,我们首先确定了单细胞数据集中变异最大的一组基因。我们计算了所有单细胞中每个基因的平均值和离散度(方差/平均值),并根据基因的平均值将基因分为 20 个箱(bins)。然后,在每个箱内,我们对箱内所有基因的离散度进行z归一化,以识别表达值高度可变的基因。

我们使用移位对数归一化后的数据:

import omicverse as ov
import scanpy as scov.utils.ov_plot_set()adata = sc.read("./data/s4d8_quality_control.h5ad")#存储原始数据以便后续还原
ov.utils.store_layers(adata,layers='counts')
adata.layers['counts'] = adata.X.copy()sc.pp.normalize_total(adata)
sc.pp.log1p(adata)
print(adata)

调用scanpy包里的pp.highly_variable_genes函数来计算高可变基因,由于我们使用的是基于基因离散度的方法,故设置flavor='seurat',该方法也是默认方法。基于基因离散度的方法寻找高变基因有两个方式:

  • 指定HVG数量,应用广泛,简单直接。
  • 指定离散度,数据敏感,应用其实很少,还是推荐指定HVG数量。

对于指定HVG数量:

adata_dis_num=sc.pp.highly_variable_genes(adata,flavor="seurat",n_top_genes=2000,subset=False,inplace=False,
)
print(adata)
print(adata_dis_num)
print(adata_dis_num['highly_variable'].value_counts())

设置inplace=False,将不会改变adata的var(打印adata的视图时,var中没有出现highly_variable)。输出为:
fig1
我们发现,一共选择了2000个高可变基因,这与我们最开始的分析目标一致。

基于基因归一化方差

在seurat v3中,提出了基于基因归一化方差做特征选择,我们不再使用归一化后的数据来计算高变基因。我们首先计算每一个基因的平均值 x ‾ i \overline{x}_{i} xi与方差 σ i \sigma_{i} σi,然后分别对平均值与方差进行log对数变换,然后用2次多项式,将方差作为均值的函数,进行多项式回归: σ ( x ) = a x 2 + b x + c \sigma(x)=ax^{2}+bx+c σ(x)=ax2+bx+c通过这个公式,可以获得每一个基因的预测方差,然后进行z变换: z i j = x i j − x ‾ i σ ( x i ) z_{ij}=\frac{x_{ij}-\overline{x}_{i}}{\sigma(x_{i})} zij=σ(xi)xijxi其中, z i j z_{ij} zij是细胞 j j j中基因 i i i的归一化值, x i j x_{ij} xij是细胞 j j j中基因 i i i的原始值, x ‾ i \overline{x}_{i} xi是所有细胞基因 i i i的平均原始值, σ ( x i ) \sigma(x_{i}) σ(xi)是预测的方差。对于特征选择,根据预测的方差进行排序即可。

在scanpy中,需要flavor='seurat_v3',并指定计数矩阵是没有归一化的layer='counts'

adata_var_num=sc.pp.highly_variable_genes(adata,flavor="seurat_v3",layer='counts',n_top_genes=2000,subset=False,inplace=False,
)
print(adata_var_num['highly_variable'].value_counts())

基于基因皮尔森近似残差

基于皮尔森近似的方法也是使用原始计数:

adata_pearson_num=sc.experimental.pp.highly_variable_genes(adata, flavor="pearson_residuals",layer='counts',n_top_genes=2000,subset=False,inplace=False,
)
print(adata_pearson_num['highly_variable'].value_counts())

特征选择总结

对比三种不同的方法:

import matplotlib.pyplot as plt
from matplotlib_venn import venn3adata_dis_num.index=adata.var_names.copy()
adata_var_num.index=adata.var_names.copy()
adata_pearson_num.index=adata.var_names.copy()# 三个列表的元素
list1 = set(adata_dis_num.loc[adata_dis_num['highly_variable']==True].index.tolist())
list2 = set(adata_var_num.loc[adata_var_num['highly_variable']==True].index.tolist())
list3 = set(adata_pearson_num.loc[adata_pearson_num['highly_variable']==True].index.tolist())# 绘制 Venn 图
venn = venn3([list1, list2, list3], set_labels=('Dis', 'Var', 'Pearson'))# 显示图形
plt.title("Venn Diagram of Three HVGs")
plt.savefig("./result/2-5.png")

fig2

发现三种不同方法所找到的高可变基因(HVGs)仅有656个是相同的,这意味着不同的方法所寻找到的高可变基因会影响下游分析的结果一致性。如果对时间要求不严格,推荐使用皮尔森残差法来获得高可变基因。如果需要快速,推荐基于基因离散度的方法。

在omicverse中,归一化和特征选择预处理被包装好了,mode参数为normalize|HVGs,前者是归一化,后者是特征选择:

adata = sc.read("./data/s4d8_quality_control.h5ad")
#存储原始数据以便后续还原
ov.utils.store_layers(adata,layers='counts')
adata.layers['counts']=adata.X.copy()adata=ov.pp.preprocess(adata,mode='shiftlog|pearson',n_HVGs=2000)
print(adata)# 存储预处理后的数据
adata.write_h5ad('./data/s4d8_preprocess.h5ad')

在结果上,注意:与scanpy不同,omicverse计算高可变基因后,将保存为var['highly_variable_features'],而在scanpy中,HVG将保存为var['highly_variable'],都是包含bool值的Series。

这篇关于1.基于python的单细胞数据预处理-特征选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978976

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部