深度解析 | PagerDuty Copilot - 运维领域大模型应用场景

2024-05-10 17:36

本文主要是介绍深度解析 | PagerDuty Copilot - 运维领域大模型应用场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【本文作者:擎创科技资深产品专家 布博士】

最近一年多的时间里,生成式人工智能(我们通常称为大语言模型)已经成为了各行各业提升效率的、降低成本的强大工具。PagerDuty Copilot,作为一款为pagerduty cloud用户提供的生成式AI助手,已经在pagerduty cloud运营云中得到了广泛的应用。本文将深入探讨PagerDuty Copilot到目前为止,实现的四大主要应用场景

事件辅助诊断AI助手

在事件发生时,PagerDuty Copilot能够帮助进行事件诊断。它可以提供事件的上下文支持,帮助识别影响因素和问题隔离,并提出补救路径,从而更快地解决问题。此外,响应者可以与PagerDuty Copilot互动,通过展示变更事件、建议的补救途径和其他可能的原因分析来进行调查。总的来说,PagerDuty Copilot能够减轻响应者的负担并自动执行时间密集型任务。

图片

事件的发生在大型分布式系统中是极其复杂的。在发生事件时,需要探讨和分析各种信息:

  • 服务中断:这可能使用户无法访问或使用关键服务,从而可能影响用户的满意度和信任度。

  • 各种警告:例如500错误、值机失败、航班延误、数据库响应滞后、存储响应不及时、应用无法访问等问题。

  • 各种变更:失败可能是由于变更引起的。

  • 客户投诉:包括来自用户或内部员工的各种投诉信息以及他们收集的背景信息。

  • 杂乱无章:各种信息都统一到事件工作台界面,难以短时间了解问题全貌。

在极短的时间内,人们很难全面了解这些信息,更不用说在这种事件或应急处理的场景下。

图片

在这种背景下,pagerduty提供了pagerduty copilot的能力,如上图右侧所示,通过自然语言的问答模式,可以快速获取针对这些杂乱无章信息的快速洞察能力:

  • 快速了解都发生了什么事情

图片

  • 对客户的影响情况

图片

  • 问题产生的可能原因分析

图片

  • 自动化修复建议,生成修复后对客户的反馈说明,并人工审核和发送

图片

图片

AI生成事件状态更新同步干系人

在出现计划外的罢工或工作中断事件时,沟通和协调对于问题解决至关重要。行业最佳实践建议每30分钟(至少)向利益相关者和领导层进行定期状态更新,以确保企业以统一的声音回应。然而,制作这些更新需要时间,且在您的团队已经处于高压状态时,这将增加认知负担。我们有客户告诉我们,在重大事件期间,他们会有三个人专门负责状态更新。

生成式人工智能的部署正是我们的开始。通过将生成式人工智能集成到我们的状态更新功能中,团队可以节省内容和对象的描述周期——仅需几次点击,他们就可以生成基于角色的状态更新草稿。新功能利用人工智能处理与当前事件相关的所有数据并自动生成摘要,提供关于事件、进展和挑战的关键见解。除节省时间外,此功能还增强了事件管理流程并简化了沟通,使您的团队能够更专注于解决问题的实际工作。

具体操作如下流程:

  • 图1 - 在事件管理界面点击“generate status updates”按钮,进入图2

  • 图2 - 点击“generate“按钮,会自动生成针对该事件的最新状态说明信息,并在下方可以预览生成之后的邮件格式

图片

图1 - 事件详情页

图片

图2 - 生成和发送状态更新页

AI生成事后分析及总结报告

事后分析是卓越运营的主要内容之一,也是由站点可靠性工程 (SRE) 推动的最佳实践。它让您能够理解问题所在、找出可以改进的地方,最重要的是,它让您知道如何避免重复同样的错误。

然而,花费时间进行事后分析可能具有挑战性。这是一个繁琐、手动的过程(有时带有情绪色彩),需要收集所有相关数据点供团队审查。

想象一下,有一组虚拟团队成员始终跟踪事件,他们的主要任务是为您的事后报告创建及时且公正的总结。这正是我们通过利用人工智能应用,自动创建全面的事件后总结报告所能提供的。

图片

如上图所示,一旦问题得到解决,用户可以选择生成事后分析报告。这将触发一个实时且耗时的数据收集过程,搜集所有与当前问题相关的可用数据,包括日志、指标,以及相关的 Slack 或 Microsoft Teams 对话。然后,系统将生成一份详细的报告,包含主要发现、根本原因以及需要改进的领域。此外,PagerDuty 还会生成一份建议的行动项目列表,以防止未来发生类似问题。

此功能不仅可以节省时间,而且还可以为捕获关键知识提供一个起点,培养持续改进的文化,并使团队能够将更多时间花在面向未来的验证上,这让我们回到了人的重要性。当您谈论关键任务工作时,使用循环方法来释放生成式人工智能的力量。

与上面的状态更新示例一样,自动事件事后分析需要一个人提供专业知识、判断和监督,验证和完善报告,然后再将其发布以供更广泛的使用。

图片

如上图所示生成了一份事后总结报告的草稿,并将需要填写的重要信息已经自动填写上。

图片

事件的开始和截止时间以及涉及到的事件列表,也可以自行添加。

图片

事件的发生的timeline信息。

图片

报告的总结以及都发生了什么的简要说明。

图片

影响和触发问题的原因

图片

经验考试和行动项

AI生成流程自动化

自PagerDuty Operations Cloud平台建立以来,他们一直在多平台使用自动化,并与众多人合作提供脚本和插件,以自动化工作流程,帮助客户更快地管理和解决计划外工作。他们的客户每天都在使用他们的服务,在云端和本地进行基础设施自动化,驱动Ansible、Terraform和Power Automate。然而,如果尚未有现成的脚本和工具,客户需要自己进行繁重的工作来编写脚本。

PagerDuty利用生成式人工智能作为用户自动化需求的实现者。这就像在用户团队中多了一位开发人员,他可以被分配去研究如何完成用户想要做的事情,然后为用户创建自动化。最重要的是,该系统可以使用用户最喜欢的脚本语言来完成任务,或者可以轻松地从一种语言转换到另一种语言,因此用户有完全的控制权。PagerDuty正在将低代码功能引入以往的高代码体验中,而不会失去任何功能或灵活性。例如,用户可以简单地声明:“编写一个自动化工作流程,将特定用户添加到Okta中的组中。我应该能够在运行时通过电子邮件和组指定用户。”点击生成按钮后,就可以观察结果。

  • 生成自动化脚本

图片

  • 生成故障时,选择执行自动化脚本

图片

  • 查看执行过程

图片

总结:PagerDuty Copilot所实现的高效、灵活、智能的运维辅助服务,是依赖于像ChatGPT-4这样的大模型的能力。这种大模型具有强大的学习和理解能力,可以处理大量的复杂信息,给出准确的反馈和建议。然而,当前我们看到的国内的大模型,要实现PagerDuty Copilot这样的效果,还存在着非常大的差距。特别是对于那些有安全性考虑的企业客户来说,要在未来的3-5年内实现这样的能力,最大的挑战是国有大模型能否经得起市场的验证,没有对比就没有伤害。因此,我们需要不断地学习和研究,努力提升我们的大模型的能力。

这篇关于深度解析 | PagerDuty Copilot - 运维领域大模型应用场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977107

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛