YOLOv5改进 | 独家创新篇 | 利用MobileNetV4的UIB模块二次创新C3(全网独家首发)

本文主要是介绍YOLOv5改进 | 独家创新篇 | 利用MobileNetV4的UIB模块二次创新C3(全网独家首发),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、本文介绍

本文给大家带来的改进机制是利用MobileNetV4UIB模块二次创新C3其中UIB模块来自2024.5月发布的MobileNetV4网络,其是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB,也就是本文利用的结构)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。我将其用于C3的二次创新在V5n上参数量为130W,计算量为3.3GFLOPs,非常适用于想要轻量化网络模型的读者来使用,同时本文结构为本专栏独家创新。

欢迎大家订阅我的专栏一起学习YOLO! 

 专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新


目录

 一、本文介绍

二、原理介绍

三、核心代码

四、添加教程

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、C3UIB的yaml文件和运行记录

5.1 C3UIB的yaml文件1

5.3 C3UIB的训练过程截图 

五、本文总结


二、原理介绍

 

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转


MobileNetV4是MobileNet系列的最新版本,专为移动设备设计,引入了多种新颖且高效的架构组件。其中最关键的是通用反转瓶颈(UIB),它结合了以前模型如MobileNetV2的反转瓶颈和新元素,例如ConvNext块和视觉变换器(ViT)中的前馈网络。这种结构允许在不过度复杂化架构搜索过程的情况下,适应性地并有效地扩展模型到各种平台。

此外,MobileNetV4还包括一种名为Mobile MQA的新型注意力机制,该机制通过优化算术运算与内存访问的比率,显著提高了移动加速器上的推理速度,这是移动性能的关键因素。该架构通过精细的神经网络架构搜索(NAS)和新颖的蒸馏技术进一步优化,使得MobileNetV4能够在多种硬件平台上达到最优性能,包括移动CPU、DSP、GPU和特定的加速器,如Apple的Neural Engine和Google的Pixel EdgeTPU。

此外,MobileNetV4还引入了改进的NAS策略,通过粗粒度和细粒度搜索相结合的方法,显著提高搜索效率并改善模型质量。通过这种方法,MobileNetV4能够实现大多数情况下的Pareto最优性能,这意味着在不同设备上都能达到效率和准确性的最佳平衡。

最后,通过一种新的蒸馏技术,MobileNetV4进一步提高了准确性,其混合型大模型在ImageNet-1K数据集上达到了87%的顶级准确率,同时在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。这些特性使MobileNetV4成为适用于移动环境中高效视觉任务的理想选择。

主要思想提取和总结:

1. 通用反转瓶颈(UIB),本文利用的机制:

MobileNetV4引入了一种名为通用反转瓶颈(UIB)的新架构组件。UIB是一个灵活的架构单元,融合了反转瓶颈(IB)、ConvNext、前馈网络(FFN),以及新颖的额外深度(ExtraDW)变体。

2. Mobile MQA注意力机制:

为了优化移动加速器的性能,MobileNetV4设计了一个特殊的注意力模块,名为Mobile MQA。这一模块针对移动设备的计算和存储限制进行了优化,提供了高达39%的推理速度提升。

3. 优化的神经架构搜索(NAS)配方:

通过改进的NAS配方,MobileNetV4能够更高效地搜索和优化网络架构,这有助于发现适合特定硬件的最优模型配置。 

4. 模型蒸馏技术:

引入了一种新的蒸馏技术,用以提高模型的准确性。通过这种技术,MNv4-Hybrid-Large模型在ImageNet-1K上达到了87%的准确率,并且在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。

个人总结:MobileNetV4是一个专为移动设备设计的高效深度学习模型。它通过整合多种先进技术,如通用反转瓶颈(UIB)、针对移动设备优化的注意力机制(Mobile MQA),以及先进的架构搜索方法(NAS),实现了在不同硬件上的高效运行。这些技术的融合不仅大幅提升了模型的运行速度,还显著提高了准确率。特别是,它的一个变体模型在标准图像识别测试中取得了87%的准确率,运行速度极快。


三、核心代码

核心代码的使用方式看章节四!

import torch.nn as nn
from typing import Optional
import torch__all__ = ['C3_UIB']def make_divisible(value: float,divisor: int,min_value: Optional[float] = None,round_down_protect: bool = True,
) -> int:"""This function is copied from here"https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"This is to ensure that all layers have channels that are divisible by 8.Args:value: A `float` of original value.divisor: An `int` of the divisor that need to be checked upon.min_value: A `float` of  minimum value threshold.round_down_protect: A `bool` indicating whether round down more than 10%will be allowed.Returns:The adjusted value in `int` that is divisible against divisor."""if min_value is None:min_value = divisornew_value = max(min_value, int(value + divisor / 2) // divisor * divisor)# Make sure that round down does not go down by more than 10%.if round_down_protect and new_value < 0.9 * value:new_value += divisorreturn int(new_value)def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):conv = nn.Sequential()padding = (kernel_size - 1) // 2conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))if norm:conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))if act:conv.add_module('Activation', nn.ReLU6())return convclass UniversalInvertedBottleneckBlock(nn.Module):def __init__(self,inp,oup,start_dw_kernel_size=3,middle_dw_kernel_size=3,middle_dw_downsample=1,stride=1,expand_ratio=1):"""An inverted bottleneck block with optional depthwises.Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py"""super().__init__()# Starting depthwise conv.self.start_dw_kernel_size = start_dw_kernel_sizeif self.start_dw_kernel_size:stride_ = stride if not middle_dw_downsample else 1self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)# Expansion with 1x1 convs.expand_filters = make_divisible(inp * expand_ratio, 8)self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)# Middle depthwise conv.self.middle_dw_kernel_size = middle_dw_kernel_sizeif self.middle_dw_kernel_size:stride_ = stride if middle_dw_downsample else 1self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_,groups=expand_filters)# Projection with 1x1 convs.self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)# Ending depthwise conv.# this not used# _end_dw_kernel_size = 0# self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)def forward(self, x):if self.start_dw_kernel_size:x = self._start_dw_(x)# print("_start_dw_", x.shape)x = self._expand_conv(x)# print("_expand_conv", x.shape)if self.middle_dw_kernel_size:x = self._middle_dw(x)# print("_middle_dw", x.shape)x = self._proj_conv(x)# print("_proj_conv", x.shape)return xdef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class C3_UIB(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(UniversalInvertedBottleneckBlock(c_, c_) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))if __name__ == '__main__':x = torch.randn(1, 32, 16, 16)model = C3_UIB(32, 32)print(model(x).shape)


四、添加教程

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、C3UIB的yaml文件和运行记录

5.1 C3UIB的yaml文件1

主干和Neck全部用上该卷积轻量化到机制的yaml文件。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3_UIB, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3_UIB, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3_UIB, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3_UIB, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head: [[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3_UIB, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, "nearest"]],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3_UIB, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3_UIB, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3_UIB, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]

5.3 C3UIB的训练过程截图 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

这篇关于YOLOv5改进 | 独家创新篇 | 利用MobileNetV4的UIB模块二次创新C3(全网独家首发)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976847

相关文章

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python sys模块的使用及说明

《Pythonsys模块的使用及说明》Pythonsys模块是核心工具,用于解释器交互与运行时控制,涵盖命令行参数处理、路径修改、强制退出、I/O重定向、系统信息获取等功能,适用于脚本开发与调试,需... 目录python sys 模块详解常用功能与代码示例获取命令行参数修改模块搜索路径强制退出程序标准输入

Python pickle模块的使用指南

《Pythonpickle模块的使用指南》Pythonpickle模块用于对象序列化与反序列化,支持dump/load方法及自定义类,需注意安全风险,建议在受控环境中使用,适用于模型持久化、缓存及跨... 目录python pickle 模块详解基本序列化与反序列化直接序列化为字节流自定义对象的序列化安全注

python pymodbus模块的具体使用

《pythonpymodbus模块的具体使用》pymodbus是一个Python实现的Modbus协议库,支持TCP和RTU通信模式,支持读写线圈、离散输入、保持寄存器等数据类型,具有一定的参考价值... 目录一、详解1、 基础概念2、核心功能3、安装与设置4、使用示例5、 高级特性6、注意事项二、代码示例

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

Nginx添加内置模块过程

《Nginx添加内置模块过程》文章指导如何检查并添加Nginx的with-http_gzip_static模块:确认该模块未默认安装后,需下载同版本源码重新编译,备份替换原有二进制文件,最后重启服务验... 目录1、查看Nginx已编辑的模块2、Nginx官网查看内置模块3、停止Nginx服务4、Nginx

python urllib模块使用操作方法

《pythonurllib模块使用操作方法》Python提供了多个库用于处理URL,常用的有urllib、requests和urlparse(Python3中为urllib.parse),下面是这些... 目录URL 处理库urllib 模块requests 库urlparse 和 urljoin编码和解码

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录