代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 435. 无重叠区间
    • 做题
    • 基于左边界的贪心算法
    • 基于左边界,把452.用最少数量的箭引爆气球代码稍做修改
  • 763.划分字母区间
    • 做题
    • 看文章
  • 56. 合并区间
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

435. 无重叠区间

代码随想录:435. 无重叠区间
Leetcode:435. 无重叠区间

做题

无思路。

基于左边界的贪心算法

有点难理解,需要仔细琢磨。

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if not intervals:return 0intervals.sort(key=lambda x: x[0])  # 按照左边界升序排序count = 0  # 记录重叠区间数量for i in range(1, len(intervals)):if intervals[i][0] < intervals[i - 1][1]:  # 存在重叠区间intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])  # 更新重叠区间的右边界count += 1return count

时间复杂度:O(nlog n) ,有一个快排
空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

基于左边界,把452.用最少数量的箭引爆气球代码稍做修改

会452题的话,这样看比较好理解。

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if not intervals:return 0intervals.sort(key=lambda x: x[0])  # 按照左边界升序排序result = 1  # 不重叠区间数量,初始化为1,因为至少有一个不重叠的区间for i in range(1, len(intervals)):if intervals[i][0] >= intervals[i - 1][1]:  # 没有重叠result += 1else:  # 重叠情况intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])  # 更新重叠区间的右边界return len(intervals) - result

763.划分字母区间

代码随想录:763.划分字母区间
Leetcode:763.划分字母区间

做题

思路:先遍历一遍,保存各字母的频次;再遍历一次,实时记录当前各字母的频次,当各字母频次均达上限时,才能跳入下一个字母区间。

看文章

可以分为如下两步:

  1. 统计每一个字符最后出现的位置
  2. 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

自己动手实现一下:

class Solution:def partitionLabels(self, s: str) -> List[int]:pos_right = [0] * 26for i in range(len(s)):cur = ord(s[i]) - ord('a')pos_right[cur] = max(i, pos_right[cur])right = 0res = []count = 0for i in range(len(s)):cur = ord(s[i]) - ord('a')right = max(right, pos_right[cur])count += 1if i == right:res.append(count)count = 0right = i+1return res

上述是用数组储存,也可以用hash表存储。具体如下:

class Solution:def partitionLabels(self, s: str) -> List[int]:last_occurrence = {}  # 存储每个字符最后出现的位置for i, ch in enumerate(s):last_occurrence[ch] = iresult = []start = 0end = 0for i, ch in enumerate(s):end = max(end, last_occurrence[ch])  # 找到当前字符出现的最远位置if i == end:  # 如果当前位置是最远位置,表示可以分割出一个区间result.append(end - start + 1)start = i + 1return result

时间复杂度:O(n)
空间复杂度:O(1),使用的hash数组是固定大小

56. 合并区间

代码随想录:56. 合并区间
Leetcode:56. 合并区间

做题

有点类似射箭,排序后,对重叠的区间求并集即可。

class Solution:def merge(self, intervals: List[List[int]]) -> List[List[int]]:intervals.sort(key=lambda x:x[0])left = intervals[0][0]right = intervals[0][1]res = []for i in range(1, len(intervals)):if intervals[i][0] <= right and intervals[i][1] >= left:left = min(intervals[i][0], left)right = max(intervals[i][1], right)else:res.append([left, right])left = intervals[i][0]right = intervals[i][1]res.append([left, right])return res

时间复杂度: O(nlogn)
空间复杂度: O(logn),排序需要的空间开销

看文章

思路大体一致,处理细节有不同,代码如下:

class Solution:def merge(self, intervals):result = []if len(intervals) == 0:return result  # 区间集合为空直接返回intervals.sort(key=lambda x: x[0])  # 按照区间的左边界进行排序result.append(intervals[0])  # 第一个区间可以直接放入结果集中for i in range(1, len(intervals)):if result[-1][1] >= intervals[i][0]:  # 发现重叠区间# 合并区间,只需要更新结果集最后一个区间的右边界,因为根据排序,左边界已经是最小的result[-1][1] = max(result[-1][1], intervals[i][1])else:result.append(intervals[i])  # 区间不重叠return result

以往忽略的知识点小结

  • 找重叠/不重叠区间,主要是对比当前区间的左边界和上一个区间(可能是变化后)的右边界
  • 划分字母区间:可以用最远字母的index,不需要用频次

个人体会

完成时间:1h20min。
心得:区间的题主要是理解判断思路。

这篇关于代码随想录算法训练营Day35 | 435. 无重叠区间、763.划分字母区间、56. 合并区间 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976440

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所