0401概述-分治策略-算法导论第三版

2024-05-10 10:20

本文主要是介绍0401概述-分治策略-算法导论第三版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1 概述
      • 2 递归式
      • 3 递归式技术细节
    • 结语

1 概述

在分治策略中,我们递归地求解一个问题,在每层递归中应用如下三个步骤:

  • 分解:将问题划分为一些规模更小形式一样的子问题。
  • 解决:递归求解子问题。如果子问题规模足够小,停止递归,直接求解。
  • 合并:将子问题的解组合成原问题的解。

当子问题规模足够大,需要递归求解时,我们称之为 递归情况。当子问题变得足够小,不需要递归时,进入 基本情况。有时,除了与原问题形式完全一样的规模更小的子问题外,还需要求解与原问题形式不完全一样的子问题。我们将这些子问题的求解看做合并步骤的一部分。

2 递归式

递归式与分治方法是紧密相关的,因为使用递归式可以很自然地刻画分治算法的运行时间。一个递归式就是一个不等式或等式,它通过更小的输入上的函数值来描述一个函数。

递归式有很多形式。

子问题的规模不必是原问题规模的一个固定比例。

求解递归式的方法,可得出算法 Θ 或 O \Theta 或\Omicron ΘO渐进界

  • 代入法:我们猜测一个界,然后用数学归纳法证明这个界是正确的。
  • 递归树法:将递归式转换为一棵树,其结点表示不同层次的递归调用产生的代价。然后采用边界和技术来求解递归式。
  • 主方法:可求解形如下面公司的递归式的界。 T ( n ) = a T ( n / b ) + f ( n ) T(n)=aT(n/b)+f(n) T(n)=aT(n/b)+f(n) ,其中 a ≥ 1 , b > 1 , f ( n ) a\ge 1,b\gt 1,f(n) a1,b>1,f(n)是一个给定的函数。这种形式的递归式很常见,它刻画了一个分治算法:生成a个子问题,每个子问题的规模是原问题规模的 1 b \frac{1}{b} b1,分解和合并步骤总共花费时间为 f ( n ) f(n) f(n)

我们遇到不是等式而是不等式的递归式,例如 T ( n ) ≤ 2 T ( n / 2 ) + Θ ( n ) T(n)\le 2T(n/2)+\Theta(n) T(n)2T(n/2)+Θ(n),该递归式描述了 T ( n ) T(n) T(n)的一个上界,可以用 O \Omicron O来描述其解。同样的,如果是不等式 T ( n ) ≥ 2 T ( n / 2 ) + Θ ( n ) T(n)\ge 2T(n/2)+\Theta(n) T(n)2T(n/2)+Θ(n),可以用 Ω \Omega Ω来描述其解。

3 递归式技术细节

在实际应用中,我们会忽略递归式声明和求解的一些技术细节。例如,如果对n个元素调MERGE-SORT,当n位奇数时,两个子问题的规模分别为$\lfloor \frac{n}{2}\rfloor和\lceil\frac{n}{2}\rceil , 准确来说都不是 ,准确来说都不是 ,准确来说都不是\frac{n}{2}$.

边界条件是另一类我们同忽略的细节。由于对于一个常量规模的输入,算法的运行时间为常量,因此对于足够小的n,表示算法运行时间的递归式一般为 T ( n ) = Θ ( 1 ) T(n)=\Theta(1) T(n)=Θ(1).

当声明、求解递归式时,我们常常忽略向下取整、向上取整及边界条件。我们先忽略这些细节,稍后在确定这些细节对结果是否有较大的影响。通常影响不大,但需要知道什么时候影响不大,一方面依靠经验判断,另一个方面,一些定理也表名,对于很多刻画分治算法的递归式,这些细节不会影响其渐进界。

能不能用树形结构+线程池实现递归?

结语

欢迎小伙伴一起学习交流,需要啥工具或者有啥问题随时联系我。

❓QQ:806797785

⭐️源代码地址:https://gitee.com/gaogzhen/algorithm

[1]算法导论(原书第三版)/(美)科尔曼(Cormen, T.H.)等著;殷建平等译 [M].北京:机械工业出版社,2013.1(2021.1重印).p37-38

这篇关于0401概述-分治策略-算法导论第三版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976170

相关文章

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各