从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4

2024-05-10 09:36

本文主要是介绍从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群****Q:772356582,欢迎大家加入讨论。

一、整体框架

1.1 目的

主要根据里程计获得的先验位姿进行后端优化,闭环检测和图优化

1.2 输入

//接收相机坐标系下的点和里程计
//上一帧角点
subLaserCloudCornerLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_corner_last", 2, &mapOptimization::laserCloudCornerLastHandler, this); 
//上一帧面点
subLaserCloudSurfLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_surf_last", 2, &mapOptimization::laserCloudSurfLastHandler, this);
//上一帧无效点
subOutlierCloudLast = nh.subscribe<sensor_msgs::PointCloud2>("/outlier_cloud_last", 2, &mapOptimization::laserCloudOutlierLastHandler, this); 
//里程计位姿
subLaserOdometry = nh.subscribe<nav_msgs::Odometry>("/laser_odom_to_init", 5, &mapOptimization::laserOdometryHandler, this);  
//IMU数据
subImu = nh.subscribe<sensor_msgs::Imu> (imuTopic, 50, &mapOptimization::imuHandler, this); 

1.3 输出

//机器人关键帧在全局坐标系下的位置信息,轨迹
pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("/key_pose_origin", 2);
//机器人周围激光雷达点云数据
pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_surround", 2);
//经过位姿图优化和点云配准后的里程计信息
pubOdomAftMapped = nh.advertise<nav_msgs::Odometry> ("/aft_mapped_to_init", 5);
//机器人历史轨迹的点云数据
pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/history_cloud", 2);
//经过ICP配准后的机器人激光雷达点云数据
pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/corrected_cloud", 2);
//机器人最近获取的点云数据
pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/recent_cloud", 2);
//经过位姿图优化和点云配准后的机器人点云数据用于建图
pubRegisteredCloud = nh.advertise<sensor_msgs::PointCloud2>("/registered_cloud", 2);

主函数

主要的功能是在run函数里面

int main(int argc, char** argv)
{ros::init(argc, argv, "lego_loam");ROS_INFO("\033[1;32m---->\033[0m Map Optimization Started.");mapOptimization MO;// 1.进行闭环检测与闭环的功能std::thread loopthread(&mapOptimization::loopClosureThread, &MO);// 2.将数据发布到ros中,可视化std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);ros::Rate rate(200);while (ros::ok()){ros::spinOnce();MO.run(); //进入执行run函数rate.sleep();}loopthread.join();visualizeMapThread.join();return 0;
}
// 3.run函数
void run(){if (timeLaserOdometry - timeLastProcessing >= mappingProcessInterval) {timeLastProcessing = timeLaserOdometry;transformAssociateToMap(); //转换到map坐标系下extractSurroundingKeyFrames(); //提取周围的关键帧downsampleCurrentScan(); //下采样当前帧// 当前扫描进行边缘优化,图优化以及进行LM优化的过程scan2MapOptimization();saveKeyFramesAndFactor(); //保存关键帧和因子correctPoses(); //校正位姿publishTF(); //发布坐标变换publishKeyPosesAndFrames(); //发布关键帧和因子clearCloud();}}} //清除点云

二、函数解析

2.1 transformAssociateToMap

  • 作用:将坐标转移到世界坐标系下,得到可用于建图的Lidar坐标
  • 输入:transformBefMapped[] 前一帧在世界坐标系的位姿
  •  transformSum  当前帧的位姿
    
  • 输出:transformTobeMapped当前帧在世界坐标系的位置
  • 代码:
 void transformAssociateToMap(){float x1 = cos(transformSum[1]) * (transformBefMapped[3] - transformSum[3]) - sin(transformSum[1]) * (transformBefMapped[5] - transformSum[5]);float y1 = transformBefMapped[4] - transformSum[4];float z1 = sin(transformSum[1]) * (transformBefMapped[3] - transformSum[3]) + cos(transformSum[1]) * (transformBefMapped[5] - transformSum[5]);float x2 = x1;float y2 = cos(transformSum[0]) * y1 + sin(transformSum[0]) * z1;float z2 = -sin(transformSum[0]) * y1 + cos(transformSum[0]) * z1;// 计算平移增量transformIncre[3] = cos(transformSum[2]) * x2 + sin(transformSum[2]) * y2;transformIncre[4] = -sin(transformSum[2]) * x2 + cos(transformSum[2]) * y2;transformIncre[5] = z2;……x1 = cos(transformTobeMapped[2]) * transformIncre[3] - sin(transformTobeMapped[2]) * transformIncre[4];y1 = sin(transformTobeMapped[2]) * transformIncre[3] + cos(transformTobeMapped[2])* transformIncre[4];z1 = transformIncre[5];x2 = x1;y2 = cos(transformTobeMapped[0]) * y1 - sin(transformTobeMapped[0]) * z1;z2 = sin(transformTobeMapped[0]) * y1 + cos(transformTobeMapped[0]) * z1;transformTobeMapped[3] = transformAftMapped[3] - (cos(transformTobeMapped[1]) * x2 + sin(transformTobeMapped[1]) * z2);transformTobeMapped[4] = transformAftMapped[4] - y2;transformTobeMapped[5] = transformAftMapped[5] - (-sin(transformTobeMapped[1]) * x2 + cos(transformTobeMapped[1]) * z2);}

详情请见。。。
https://www.guyuehome.com/46822

这篇关于从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976071

相关文章

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte