InternLM-Chat-7B部署调用-个人记录

2024-05-10 08:36

本文主要是介绍InternLM-Chat-7B部署调用-个人记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、环境准备

pip install modelscope==1.9.5
pip install transformers==4.35.2

二、下载模型

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/home/bingxing2/ailab/group/ai4agr/wzf/LLM/models', revision='master')

使用modelscope(魔塔社区)中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

三、终端运行模型

新建一个 demo.py 文件,将以下代码填入其中,之后直接使用python命令执行脚本:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM# 指定模型路径
model_name_or_path = "/home/bingxing2/ailab/group/ai4agr/wzf/LLM/models/InternLM-Chat-7B/Shanghai_AI_Laboratory/internlm-chat-7b"# 加载预训练分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model.eval()print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")if input_text == "exit":break# 使用模型生成响应inputs = tokenizer.encode(input_text, return_tensors="pt")outputs = model.generate(inputs, max_length=50, pad_token_id=tokenizer.eos_token_id)response = tokenizer.decode(outputs[0], skip_special_tokens=True)print(f"Robot >>> {response}")

 运行样例(反应很慢):

四、web端运行

1.克隆代码  

git clone https://gitee.com/internlm/InternLM.git

克隆好项目后需要进入/InternLM/web_demo.py中,将其中的29和33行的模型替换为本地模型路径。例如/root/model/Shanghai_AI_Laboratory/internlm-chat-7b

2.web demo运行

streamlit run /InternLM/web_demo.py --server.address 127.0.0.1 --server.port 6006

3.将端口映射到本地。

进入InternStudio控制台 ,需要邀请码,暂时不写了,搞到了再接着写。请参考实操作业:基于浦语大模型InternLM-Chat-7B 对话、智能体工具调用、图文创作等场景部署实操步骤-CSDN博客

参考:

【InternLM】书生-浦语大模型demo搭建&服务接口部署&本地映射_书生浦语部署-CSDN博客

实操作业:基于浦语大模型InternLM-Chat-7B 对话、智能体工具调用、图文创作等场景部署实操步骤-CSDN博客

大模型实战营第二期——2. 浦语大模型趣味Demo_internlm-chat-7b什么量级-CSDN博客 

这篇关于InternLM-Chat-7B部署调用-个人记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975960

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

使用Go调用第三方API的方法详解

《使用Go调用第三方API的方法详解》在现代应用开发中,调用第三方API是非常常见的场景,比如获取天气预报、翻译文本、发送短信等,Go作为一门高效并发的编程语言,拥有强大的标准库和丰富的第三方库,可以... 目录引言一、准备工作二、案例1:调用天气查询 API1. 注册并获取 API Key2. 代码实现3

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、