生信分析进阶2 - 利用GC含量的Loess回归矫正reads数量

2024-05-10 07:52

本文主要是介绍生信分析进阶2 - 利用GC含量的Loess回归矫正reads数量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在NGS数据比对后,需要矫正GC偏好引起的reads数量误差可用loess回归算法,使用R语言对封装的loess算法实现。

在NIPT中,GC矫正对检测结果准确性非常重要,具体研究参考以下文章。

Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing
链接地址:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130771/
在这里插入图片描述窗口划分可参考文章:

生信软件8 - bedtools进行窗口划分、窗口GC含量、窗口测序深度和窗口SNP统计

获取参考基因组大小

以hg19参考基因组为例。

# 安装python库
pip install pyfaidx# 保留chr1-chr22 chrX chrY
faidx reference/hg19.fasta -i chromsizes|grep -E -v '_|chrM' > hg19.genome.size

hg19.genome.size

划分基因组窗口

以1000kb划分为例。

bedtools makewindows -g hg19.genome.size -w 1000000 > hg19.1000kb.bed

hg19.1000kb.bed

划分窗口

bedtools nuc -fi /reference/hg19.fasta -bed hg19.1000kb.bed|cut -f 1-3,5 > hg19.1000kb.gc.bed

hg19.1000kb.gc.bed

统计窗口reads和GC含量

bedtools coverage -a hg19.1000kb.bed -b sample.sorted.bam > sample.count

sample.count

整理数据

paste <(grep -v '#' hg19.1000kb.gc.bed) <(cut -f4 sample.count)|sed '1i chr\tstart\tend\tGC\treads' > sample.gc.count

sample.gc.count

利用GC含量的Loess回归矫正reads数量

R语言实现。

# loess_gc_correct.R
# Useage: Rscript loess_gc_correct.R /path/sample.gc.count /path/sample.gc.corrected.countargs=commandArgs(T)
# 输入文件路径
gc.reads.file <- args[1]
# 输出文件路径
gc.reads.corrected.file <- args[2]# 读取输入文件
raw.data <- read.table(gc.reads.file, sep='\t', head=TRUE)# loess regression 进行GC矫正reads数量
gc.count.loess <- loess(reads~GC,data = raw.data,control = loess.control(surface = "direct"), degree=2) prediction <- predict(gc.count.loess, raw.data$GC)raw.data$corrected_reads <- as.integer(prediction)# 保存
write.table(raw.data, file = gc.reads.corrected.file,sep = '\t', quote = FALSE)

矫正后结果

矫正后文件

这篇关于生信分析进阶2 - 利用GC含量的Loess回归矫正reads数量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975878

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习