数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)

本文主要是介绍数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

绪论

千里之行始于足下;继续坚持

1.对比Python和numpy的性能

使用魔法指令%timeit进行对比
需求:

  • 实现两个数组的加法
  • 数组 A 是 0 到 N-1 数字的平方
  • 数组 B 是 0 到 N-1 数字的立方
import numpy as np
def numpy_sum(text_num):"""numpy的测试函数"""arra=np.arange(text_num) ** 2arrb=np.arange(text_num) ** 3return arra+arrbdef python_sum(text_num):"""原生Python的测试函数"""ab_sum=[]a=[value**2 for value in range(0,text_num)]b=[value**3 for value in range(0,text_num)]for i in range(0,text_num):ab_sum.append(a[i]+b[i])return ab_sumtext_num=100#保存Python的测试时间
#100,1000的数组长度测试起来时间可能比较小;可视化不太方便
python_times=[]
#进行到1000000次的时间测试
while text_num <= 1000000:result= %timeit -o python_sum(text_num)text_num=text_num*10python_times.append(result.average)#保存numpy的测试时间
numpy_times=[]
text_num=100
while text_num <= 1000000:result= %timeit -o numpy_sum(text_num)numpy_times.append(result.average)text_num=text_num*10

下面通过折线图进行对比

#数据可视化对比
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatterx_values=[100,1000,10000,100000,1000000]
python_y_values=np.array(python_times)*1000000
numpy_y_values=np.array(numpy_times)*1000000
fig,ax=plt.subplots()
ax.plot(x_values,python_y_values,linewidth=3,label='python')
ax.plot(x_values,numpy_y_values,linewidth=3,label='numpy')
ax.set_title("Comparing Numpy's Time with Python",fontsize=14)
ax.set_xlabel('text sum',fontsize=14)
ax.set_ylabel('time/us',fontsize=14)
#设置显示所有刻度
#ax.set_xticks(x_values,minor=True)
#使x轴完全表示,使用formatter自定义格式
formatter=ScalarFormatter(useMathText=True)#使用数学格式表示
formatter.set_powerlimits((0,7))
ax.xaxis.set_major_formatter(formatter)
ax.legend()#显示label标签
plt.show(

在这里插入图片描述
绘制柱状图

#绘制柱状图
fig,ax=plt.subplots()
bar_width=0.35
ax.bar(x_values,python_y_values,bar_width,label='Python')
ax.bar(x_values,numpy_y_values,bar_width,label='Numpy')ax.legend()#legend() 函数用于添加图例到图形上,就是右上角的图形
plt.tight_layout()
plt.show()

在这里插入图片描述
100和1000的时间太短了;可以从100000开始到100000000这样可视化会比较好看

这篇关于数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975294

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文