数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)

本文主要是介绍数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

绪论

千里之行始于足下;继续坚持

1.对比Python和numpy的性能

使用魔法指令%timeit进行对比
需求:

  • 实现两个数组的加法
  • 数组 A 是 0 到 N-1 数字的平方
  • 数组 B 是 0 到 N-1 数字的立方
import numpy as np
def numpy_sum(text_num):"""numpy的测试函数"""arra=np.arange(text_num) ** 2arrb=np.arange(text_num) ** 3return arra+arrbdef python_sum(text_num):"""原生Python的测试函数"""ab_sum=[]a=[value**2 for value in range(0,text_num)]b=[value**3 for value in range(0,text_num)]for i in range(0,text_num):ab_sum.append(a[i]+b[i])return ab_sumtext_num=100#保存Python的测试时间
#100,1000的数组长度测试起来时间可能比较小;可视化不太方便
python_times=[]
#进行到1000000次的时间测试
while text_num <= 1000000:result= %timeit -o python_sum(text_num)text_num=text_num*10python_times.append(result.average)#保存numpy的测试时间
numpy_times=[]
text_num=100
while text_num <= 1000000:result= %timeit -o numpy_sum(text_num)numpy_times.append(result.average)text_num=text_num*10

下面通过折线图进行对比

#数据可视化对比
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatterx_values=[100,1000,10000,100000,1000000]
python_y_values=np.array(python_times)*1000000
numpy_y_values=np.array(numpy_times)*1000000
fig,ax=plt.subplots()
ax.plot(x_values,python_y_values,linewidth=3,label='python')
ax.plot(x_values,numpy_y_values,linewidth=3,label='numpy')
ax.set_title("Comparing Numpy's Time with Python",fontsize=14)
ax.set_xlabel('text sum',fontsize=14)
ax.set_ylabel('time/us',fontsize=14)
#设置显示所有刻度
#ax.set_xticks(x_values,minor=True)
#使x轴完全表示,使用formatter自定义格式
formatter=ScalarFormatter(useMathText=True)#使用数学格式表示
formatter.set_powerlimits((0,7))
ax.xaxis.set_major_formatter(formatter)
ax.legend()#显示label标签
plt.show(

在这里插入图片描述
绘制柱状图

#绘制柱状图
fig,ax=plt.subplots()
bar_width=0.35
ax.bar(x_values,python_y_values,bar_width,label='Python')
ax.bar(x_values,numpy_y_values,bar_width,label='Numpy')ax.legend()#legend() 函数用于添加图例到图形上,就是右上角的图形
plt.tight_layout()
plt.show()

在这里插入图片描述
100和1000的时间太短了;可以从100000开始到100000000这样可视化会比较好看

这篇关于数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975294

相关文章

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支