【智能算法】人工原生动物优化算法(APO)原理及实现

2024-05-10 01:52

本文主要是介绍【智能算法】人工原生动物优化算法(APO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.获取代码


1.背景

2024年,X Wang受到自然界原生动物启发,提出了人工原生动物优化算法( Artificial Protozoa Optimizer, APO)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

APO通过模拟原生动物的觅食、休眠和繁殖行为来模拟原生动物的生存机制。

在这里插入图片描述

2.2算法过程

觅食行为

对于觅食行为,作者考虑了原生动物的内部和外部因素。内部因素被认为是原生动物的觅食特征,而外部因素被认为是环境影响,如物种碰撞和竞争行为。
X i n e w = X i + f ⋅ ( X j − X i + 1 n p ⋅ ∑ k = 1 n p w a ⋅ ( X k − − X k + ) ) ⊙ M f X i = [ x i 1 , x i 2 , … , x i d i m ] , X i = s o r t ( X i ) (1) \begin{aligned}&X_{i}^{new}=X_{i}+f\cdot(X_{j}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{a}\cdot(X_{k-}-X_{k+}))\odot M_{f}\\&X_{i}=[x_{i}^{1},x_{i}^{2},\ldots,x_{i}^{dim}],\quad X_{i}=sort(X_{i})\end{aligned}\tag{1} Xinew=Xi+f(XjXi+np1k=1npwa(XkXk+))MfXi=[xi1,xi2,,xidim],Xi=sort(Xi)(1)
f = r a n d ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) n p m a x = ⌊ p s − 1 2 ⌋ w a = e − ∣ f ( X k − ) f ( X k + ) + e p s ∣ M f [ d i ] = { 1 , if d i is in r a n d p e r m ( d i m , ⌈ d i m ⋅ i p s ⌉ ) 0 , otherwise (2) f=rand\cdot(1+\cos(\frac{iter}{iter_{max}}\cdot\pi))\\ np_{max}=\lfloor\frac{ps-1}{2}\rfloor \\ w_{a}=e^{-\left|\frac{f(X_{k-})}{f(X_{k+})+eps}\right|}\\ M_f[di]=\begin{cases}1,&\text{if}di\text{is in}\:randperm(dim,\lceil dim\cdot\frac{i}\\{ps}\rceil)\\0,&\text{otherwise}\end{cases}\tag{2} f=rand(1+cos(itermaxiterπ))npmax=2ps1wa=e f(Xk+)+epsf(Xk) Mf[di]={1,0,ifdiis inrandperm(dim,dimips⌉)otherwise(2)
其中𝑋𝑛𝑒𝑤和𝑋分别表示𝑖th原生动物的更新位置和原始位置。𝑋𝑗是随机选择的𝑗th原生动物。𝑋𝑘−表示在𝑘th配对邻居中随机选择一个排序指数小于0.05的原生动物。𝑓表示觅食因子,𝑛𝑝表示外部因素之间的邻居对个数,𝑛𝑝𝑚𝑎为𝑛𝑝的最大值。𝑤𝑎是自养模式下的权重因子,⊙表示Hadamard积。
异养模式在黑暗中,原生动物可以通过从周围环境中吸收有机物来获取营养。假设𝑋𝑛𝑒𝑎𝑟是附近一个食物丰富的地方,原生动物就会向那里移动。
X i n e w = X i + f ⋅ ( X n e a r − X i + 1 n p ⋅ ∑ k = 1 n p w h ⋅ ( X i − k − X i + k ) ) ⊙ M f X n e a r = ( 1 ± R a n d ⋅ ( 1 − i t e r i t e r m a x ) ) ⊙ X i w h = e − ∣ f ( X i − k ) f ( X i + k ) + e p s ∣ R a n d = [ r a n d 1 , r a n d 2 , … , r a n d d i m ] (3) \begin{aligned} &X_{i}^{new}=X_{i}+f\cdot(X_{near}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{h}\cdot(X_{i-k}-X_{i+k}))\odot M_{f} \\ &X_{near}=(1\pm Rand\cdot(1-\frac{iter}{iter_{max}}))\odot X_{i} \\ &w_{h}=e^{-\left|\frac{f(X_{i-k})}{f(X_{i+k})+eps}\right|} \\ &Rand=[rand_{1},rand_{2},\ldots,rand_{dim}] \end{aligned}\tag{3} Xinew=Xi+f(XnearXi+np1k=1npwh(XikXi+k))MfXnear=(1±Rand(1itermaxiter))Xiwh=e f(Xi+k)+epsf(Xik) Rand=[rand1,rand2,,randdim](3)
其中𝑋𝑛𝑒𝑎𝑟是附近的位置,“±”表示𝑋𝑛𝑒𝑎𝑟可能与𝑖th原生动物在不同的方向。Xi-k表示从𝑘th配对邻居中选出的i-k原生动物。
在这里插入图片描述

休眠行为

在环境压力下,原生动物可能会采取休眠行为作为一种生存策略来忍受不利的条件。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。
X i n e w = X m i n + R a n d ⊙ ( X m a x − X m i n ) X m i n = [ l b 1 , l b 2 , … , l b d i m ] , X m a x = [ u b 1 , u b 2 , … , u b d i m ] (4) \begin{aligned}&X_{i}^{new}=X_{min}+Rand\odot(X_{max}-X_{min})\\&X_{min}=[lb_{1},lb_{2},\ldots,lb_{dim}],\quad X_{max}=[ub_{1},ub_{2},\ldots,ub_{dim}]\end{aligned}\tag{4} Xinew=Xmin+Rand(XmaxXmin)Xmin=[lb1,lb2,,lbdim],Xmax=[ub1,ub2,,ubdim](4)

繁殖行为

在适当的年龄和健康状况下,原生动物进行无性繁殖,这被称为二元裂变。理论上,这种繁殖会导致原生动物分裂成两个完全相同的子代。我们通过产生一个重复的原生动物并考虑扰动来模拟这种行为。
X i n e w = X i ± r a n d ⋅ ( X m i n + R a n d ⊙ ( X m a x − X m i n ) ) ⊙ M r M r [ d i ] = { 1 , i f d i i s i n r a n d p e r m ( d i m , ⌈ d i m ⋅ r a n d ⌉ ) 0 , o t h e r w i s e (5) \begin{aligned}&X_{i}^{new}=X_{i}\pm rand\cdot(X_{min}+Rand\odot(X_{max}-X_{min}))\odot M_{r}\\&M_{r}[di]=\begin{cases}1,&\mathrm{~if~}di\mathrm{~is~in~}randperm(dim,\lceil dim\cdot rand\rceil)\\0,&\mathrm{~otherwise}\end{cases}\end{aligned}\tag{5} Xinew=Xi±rand(Xmin+Rand(XmaxXmin))MrMr[di]={1,0, if di is in randperm(dim,dimrand⌉) otherwise(5)
APO涉及的参数:
p f = p f m a x ⋅ r a n d p a h = 1 2 ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) p d r = 1 2 ⋅ ( 1 + cos ⁡ ( ( 1 − i p s ) ⋅ π ) ) (6) \begin{aligned} &pf=pf_{max}\cdot rand \\ &p_{ah}={\frac{1}{2}}\cdot(1+\cos({\frac{iter}{iter_{max}}}\cdot\pi)) \\ &p_{dr}={\frac{1}{2}}\cdot(1+\cos((1-{\frac{i}{ps}})\cdot\pi)) \end{aligned}\tag{6} pf=pfmaxrandpah=21(1+cos(itermaxiterπ))pdr=21(1+cos((1psi)π))(6)
其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。

在这里插入图片描述

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试APO性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Wang X, Snášel V, Mirjalili S, et al. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization[J]. Knowledge-Based Systems, 2024: 111737.

5.获取代码

这篇关于【智能算法】人工原生动物优化算法(APO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975100

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使