【深度学习】【Lora训练0】StabelDiffusion,Lora训练,kohya_ss训练

2024-05-10 01:04

本文主要是介绍【深度学习】【Lora训练0】StabelDiffusion,Lora训练,kohya_ss训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 环境
  • 数据
  • 自动标注
    • kohya_ss BLIP2
    • kohya_ss WD14
  • 后续

资源:

(1)训练ui kohya_ss:
https://github.com/bmaltais/kohya_ss

(2)kohya_ss 的docker+ 其他docker

https://github.com/ashleykleynhans/stable-diffusion-docker

环境

需要等待环境构建,有点慢,启动起来后,访问 http://home.elvisiky.com:7861/。

docker run -d \--gpus all \-v /workspace \-p 7860:3001 \-p 7861:3011 \-p 7862:3021 \-p 7863:6066 \-p 7864:8000 \-p 7866:8888 \-p 7867:2999 \-e JUPYTER_PASSWORD=Jup1t3R! \-e ENABLE_TENSORBOARD=1 \ashleykza/stable-diffusion-webui:latest

Application Log file

Stable Diffusion Web UI /workspace/logs/webui.log

Kohya SS /workspace/logs/kohya_ss.log

ComfyUI /workspace/logs/comfyui.log

在这里插入图片描述

数据

数量几十张即可

分辨率适中,勿收集极小图像

数据集需要统一的主题和风格的内容,图片不宜有复杂背景以及其他无关人物

图像人物尽量多角度,多表情,多姿势

凸显面部的图像数量比例稍微大点,全身照的图片数量比例稍微小点

堆糖:https://www.duitang.com
花瓣:https://huaban.com
pinterest:https://www.pinterest.com

通常,准备数百张图像是理想的(图像数量太少会导致类别图像无法被归纳,特征也不会被学习)。

如果要使用生成的图像,生成图像的大小通常应与训练分辨率(更准确地说,是bucket的分辨率,见下文)相匹配。

自动标注

kohya_ss BLIP2

“/workspace/kohya_ss/venv/bin/python”
“/workspace/kohya_ss/sd-scripts/finetune/make_captions.
py” --batch_size 1 --num_beams 1 --top_p 0.9
–max_length 75 --min_length 5 --beam_search
–caption_extension .txt “/workspace/maonv”
–caption_weights

在这里插入图片描述

在这里插入图片描述

kohya_ss WD14

在这里插入图片描述

"/workspace/kohya_ss/venv/bin/python""/workspace/kohya_ss/sd-scripts/finetune/make_captions_by_git.py" --batch_size 1 --max_data_loader_n_workers 2--max_length 75 --caption_extension .txt"/workspace/yifei" with shell=True

后续

遇到了一个文件夹命名的问题,后续直接用秋叶包,不再用kohya_ss。

https://github.com/kohya-ss/sd-scripts/issues/1294

这篇关于【深度学习】【Lora训练0】StabelDiffusion,Lora训练,kohya_ss训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974992

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实