使用Processing和PixelFlow库创建交互式流体太极动画

2024-05-09 17:04

本文主要是介绍使用Processing和PixelFlow库创建交互式流体太极动画,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Processing和PixelFlow库创建交互式流体太极动画

  • 引言
  • 准备工作
  • 效果展示
  • 代码结构
  • 代码解析
    • 第一部分:导入库和设置基本参数
    • 第二部分:流体类定义
      • `MyFluidDataConfig` 类详解
      • `MyFluidData` 类详解
      • `my_update` 方法详解
      • 流体类定义完整代码
    • 第三部分:太极类定义
      • 太极类定义完整代码
    • 结语

引言

本教程将指导您如何使用Processing编程环境结合PixelFlow库来创建一个交互式的流体太极动画。PixelFlow是一个基于GPU的实时图形库,它提供了高效的流体模拟功能。我们将通过麦克风输入的音频振幅来驱动流体模拟,并在流体之上绘制一个动态的太极图案。

准备工作

  1. 安装Processing:访问Processing官网下载并安装Processing IDE。

  2. 导入DwPixelFlow库:在Processing中,通过菜单"Sketch" -> “Import Library…” -> “Add Library…”,搜索并安装DwPixelFlow库。

  3. 导入声音库:同样地,搜索并安装Minim库,用于处理声音输入。

效果展示

在这里插入图片描述

代码结构

我们的项目将包含以下几个主要部分:

  1. 设置窗口和基本参数:定义窗口大小、背景色和线条颜色。
  2. 声音输入设置:使用Processing的AudioInAmplitude类来获取麦克风输入的音频振幅。
  3. 流体模拟设置:初始化PixelFlow库,创建流体对象,并设置其参数。
  4. 太极图案设置:创建太极对象,并为其分配绘制层。
  5. 主循环:在draw函数中更新流体模拟和太极图案。

代码解析

第一部分:导入库和设置基本参数

import com.thomasdiewald.pixelflow.java.DwPixelFlow;
import com.thomasdiewald.pixelflow.java.fluid.DwFluid2D;import processing.core.*;
import processing.opengl.PGraphics2D;
import processing.sound.*;int viewport_w = 600; // 定义窗口宽
int viewport_h = 600; // 定义窗口高
color bg_color = #FFFFFF; // 背景色
color line_color = #000000; // 线条颜色DwFluid2D fluid; // 流体
PGraphics2D pg_fluid; // 流体层// 声音麦克风输入
AudioIn audioIn;
// 振幅-音量
Amplitude rms;Taichi taichi; // 太极
PGraphics2D pg_taichi;  // 太极图层
PGraphics2D pg_obstacles; // 障碍物
float taichi_radius = 100;void settings() {size(viewport_w, viewport_h, P2D);
}void setup() {background(bg_color);frameRate(60);// 设定声音setupSound();// 设置流体参数setupFluid();// 设置太极图setupTaichi();
}void setupSound() {audioIn = new AudioIn(this, 0);audioIn.play();rms = new Amplitude(this);rms.input(audioIn);
}void setupFluid() {// 初始化pixelflowDwPixelFlow context = new DwPixelFlow(this);context.print();context.printGL();// 流体模拟fluid = new DwFluid2D(context, width, height, 1);fluid.param.dissipation_velocity = 0.70f;fluid.param.dissipation_density  = 0.60f;fluid.addCallback_FluiData(new MyFluidData(rms));// 流体层pg_fluid = (PGraphics2D)createGraphics(width, height, P2D);// 障碍物层pg_obstacles = (PGraphics2D)createGraphics(viewport_w, viewport_h, P2D);pg_obstacles.smooth(4);
}void setupTaichi() {pg_taichi = (PGraphics2D)createGraphics(viewport_w, viewport_h, P2D);pg_taichi.smooth(4);taichi = new Taichi(new PVector(width / 2, height / 2), 100, pg_taichi, rms);
}void draw() {// 流体更新drawFluid();// 太极图drawTaichi();
}void drawFluid() {// 绘制障碍物drawObstacles();// 给流体增加障碍物fluid.addObstacles(pg_obstacles);// 流体更新fluid.update();fluid.renderFluidTextures(pg_fluid, 0);// 显示流体层image(pg_fluid, 0, 0);// 显示障碍物层image(pg_obstacles, 0, 0);
}void drawObstacles() {pg_obstacles.beginDraw();pg_obstacles.blendMode(REPLACE);pg_obstacles.clear();float x = width * 0.5;float y = height * 0.5;pg_obstacles.pushMatrix();pg_obstacles.translate(x, y);pg_obstacles.stroke(line_color);pg_obstacles.strokeWeight(2);pg_obstacles.noFill();pg_obstacles.circle(0, 0, 500);pg_obstacles.popMatrix();pg_obstacles.endDraw();
}void drawTaichi() {pg_taichi.beginDraw();pg_taichi.blendMode(REPLACE);pg_taichi.clear();pg_taichi.pushMatrix();taichi.display();pg_taichi.popMatrix();pg_taichi.endDraw();image(pg_taichi, 0, 0);
}

第二部分:流体类定义

从您提供的代码看来,这段代码是用于在Processing环境中结合DwFluid库创建一个模拟流体的视觉效果的。代码中涉及到很多类和方法,主要包含以下几个方面:

  1. MyFluidDataConfig 类:用于配置流体运动的参数,比如圆的位置、半径、运动的角度和速度以及颜色等。

  2. MyFluidData 类:实现了 DwFluid2D.FluidData 接口,用于更新流体物理仿真的状态,同时整合声音输入作为流体动态变化的一部分。

  3. my_update 方法:是流体物理仿真更新的核心,它计算流体粒子的速度和位置,并且将这些数据传递给流体库来模拟流动。

现在,让我们进一步分析并解释每个部分的作用以及如何操作。

MyFluidDataConfig 类详解

这个类定义了流体仿真所需要的一些配置参数。例如:

  • x, y: 圆心位置。
  • radius: 半径。
  • isClockwise: 定义旋转方向。
  • angleSpeed: 角速度。
  • rx, ry, prx, pry: 当前和之前的位置坐标。
  • angle: 当前角度。
  • c: 颜色。

MyFluidData 类详解

此类使用 MyFluidDataConfig 中定义的配置来创建两个配置对象 config1config2。它们负责控制流体仿真中两个独立的流动体的行为。此外,它接收一个Amplitude对象(rms),它可能用于分析音频信号并将其影响应用于流体动画。

my_update 方法详解

这个方法是每一帧都会调用的,用于更新流体的状态。步骤如下:

  1. 使用极坐标计算弧上点的位置。
  2. 随机量产生抖动,使流动效果更自然。
  3. 计算速度,并根据是否顺时针调整y轴速度。
  4. 将计算的位置和速度用来更新流体对象的状态。
  5. 根据声音级别调整流体密度的半径大小。
  6. 添加颜色和密度到流体中。

流体类定义完整代码

public class MyFluidDataConfig {float x;  // 圆心位置xfloat y; // 圆心位置yfloat radius = 100; // 半径boolean isClockwise; // 是否是顺时针float angleSpeed = 0.04;float rx, ry, prx, pry; // 圆周运动,弧上的点位置,以及上一帧的点位置float angle = 0; // 角度color c; // 颜色
}public class MyFluidData implements DwFluid2D.FluidData {MyFluidDataConfig config1;MyFluidDataConfig config2;Amplitude rms;MyFluidData(Amplitude rms) {this.rms = rms;float x1 = width * 0.5;float y1 = height * 0.5;config1 = new MyFluidDataConfig();config1.x = x1;config1.y = y1;config1.radius = 130;config1.isClockwise = true;config1.angleSpeed = 0.05;config1.c = color(0.0, 0.0, 0.0);config1.angle = PI / 2;config2 = new MyFluidDataConfig();config2.x = x1;config2.y = y1;config2.radius = 130;config2.isClockwise = true;config2.angleSpeed = 0.04;config2.c = color(0.0, 0.0, 0.0);config2.angle = - PI / 2;}void my_update(DwFluid2D fluid, MyFluidDataConfig config) {float vscale = 14;float soundLevel = rms.analyze() * 1000;float delta = random(-3, 3);// 极坐标下计算弧上点的位置,用一个随机量进行抖动config.rx = config.x + (config.radius + delta) * cos(config.angle); config.ry = config.y + (config.radius + delta) * sin(config.angle);// 计算速度float vx = (config.rx - config.prx) * vscale;float vy = (config.ry - config.pry) * vscale;// 顺时针的话,需要乘以-1,因为y轴相反if (config.isClockwise) {vy = (config.ry - config.pry) * (-vscale);}float px = config.rx;float py = config.ry;// 顺时针的话,需要乘以-1,因为y轴相反if (config.isClockwise) {py = height - config.ry;}// 给流体上的点添加速度fluid.addVelocity(px, py, 16, vx, vy);float radius1 = map(soundLevel, 10, 600, 15, 20);float radius2 = map(soundLevel, 10, 500, 8, 12);println(soundLevel, radius1, radius2);// 给流体上的点添加密度,颜色为c,半径为radius1,稍微大点fluid.addDensity(px, py, radius1, red(config.c) / 255.0, green(config.c) / 255.0, blue(config.c) / 255.0, 1.0f);// 给流体上的点添加密度,颜色为白色,半径为radius2,稍微小点fluid.addDensity(px, py, radius2, 1.0f, 1.0f, 1.0f, 1.0f);//fluid.addTemperature(px, py, 30, 10);// 现在终将成为过去config.prx = config.rx;config.pry = config.ry;// 增加弧度角,用于下一帧计算,才能旋转float angleSpeed = constrain(radians(soundLevel * 0.03), 0.01, 0.08) * 3;println(soundLevel, angleSpeed);config.angle += angleSpeed;}@Overridepublic void update(DwFluid2D fluid) {my_update(fluid, config1);my_update(fluid, config2);}
}

第三部分:太极类定义

太极类定义完整代码

class Taichi {PVector location;float radius;PGraphics2D pg;float angle = 0;Amplitude rms;  Taichi(PVector location, float radius, PGraphics2D pg, Amplitude rms) {this.location = location;this.radius = radius;this.pg = pg;this.rms = rms;}void display() {float d = 2 * radius;float soundLevel = rms.analyze();angle += TWO_PI/360 * soundLevel * 20+6;pg.noStroke();pg.translate(location.x, location.y);  // 平移坐标系,方便使用相对位置进行绘制pg.rotate(angle);pg.fill(0);pg.arc(0, 0, d, d, PI / 2, PI * 3 / 2);pg.fill(255);pg.arc(0, 0, d, d, -PI / 2, PI / 2);pg.fill(255);pg.circle(0, d / 4, radius);pg.fill(0);pg.circle(0, -d / 4, radius);pg.fill(0);pg.circle(0, d / 4, radius / 5);pg.fill(255);pg.circle(0, -d / 4, radius / 5);}
}

结语

通过本教程,您将学习到如何结合Processing的声音输入和PixelFlow的流体模拟功能,创建一个动态的太极动画。您可以根据自己的创意进一步扩展这个项目,例如添加更多的交互元素或改变流体的行为。记得在编写代码时保持耐心,实践是学习编程的最佳方式。

这篇关于使用Processing和PixelFlow库创建交互式流体太极动画的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973970

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND