本地使用 Ollama 驱动 Llama 3,Phi-3 构建智能代理(附代码)

2024-05-09 14:12

本文主要是介绍本地使用 Ollama 驱动 Llama 3,Phi-3 构建智能代理(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍如何使用langchain中的ollama库实现低参数Llama 3,Phi-3模型实现本地函数调用及结构化文本输出。

函数调用介绍

函数调用的一个很好的参考是名为 “Gorilla” 的论文,该论文探讨了函数调用的概念,并提供了一个函数调用排行榜。通过这个排行榜,我们可以了解哪些模型擅长函数调用。

例如,我们可以看到 Llama 3 70 亿参数模型在排行榜中位列第七,而 8 亿参数的 Llama 3 模型也在榜单中,尽管性能不及前者,但仍然表现不错。

使用 Ollama 设置 Llama 3 模型

首先,我们来看一个简单的示例,设置 Llama 3 模型并使用 Ollama 进行函数调用。以下是相关代码:

from langchain import Ollama, ChatPromptTemplate, StringOutputParser# 设置 Ollama 模型
llm = Ollama(model_name='llama3')# 设置提示模板
prompt_template = ChatPromptTemplate.from_template("Write me a 500-word article on {topic} from the perspective of {profession}")# 创建字符串输出解析器
output_parser = StringOutputParser()# 调用模型生成文章
response = llm(prompt=prompt_template.format(topic="AI", profession="engineer"), output_parser=output_parser)print(response)

在上述代码中,我们定义了一个简单的提示模板,并使用 Ollama 生成一个 500 字的文章。我们还可以通过设置 keep_alive 属性来保持模型在内存中的活跃状态,避免每次运行时重新加载模型。

生成 JSON 输出

接下来,我们来看如何让 Llama 3 模型生成结构化的 JSON 输出。以下是相关代码:

from langchain import JSONOutputParser# 定义 JSON 模式
json_schema = {"type": "object","properties": {"name": {"type": "string"},"age": {"type": "integer"},"hobbies": {"type": "string"}},"required": ["name", "age"]
}# 设置提示模板
prompt_template = ChatPromptTemplate.from_template("Extract the following information in JSON format: {schema}")# 创建 JSON 输出解析器
output_parser = JSONOutputParser()# 调用模型生成 JSON
response = llm(prompt=prompt_template.format(schema=json_schema), output_parser=output_parser)print(response)

在上述代码中,我们定义了一个 JSON 模式,并使用 Ollama 生成符合该模式的 JSON 输出。通过设置模型的输出格式为 JSON,可以提高生成结构化输出的概率。

使用 Pydantic 定义结构化输出

我们还可以使用 Pydantic 定义一个类,用于提取结构化输出。以下是相关代码:

from pydantic import BaseModel
from langchain import StructuredOutputLLM# 定义 Pydantic 类
class Person(BaseModel):name: strheight: floathair_color: str# 设置提示模板
prompt_template = ChatPromptTemplate.from_template("Extract the following information in JSON format: {context}")# 创建结构化输出 LLM
structured_llm = StructuredOutputLLM(llm, output_class=Person)# 调用模型生成结构化输出
context = "Alex is 5 feet tall, Claudia is 6 feet tall, Claudia has brown hair."
response = structured_llm(prompt=prompt_template.format(context=context))print(response)

在上述代码中,我们使用 Pydantic 定义了一个 Person 类,并使用 Ollama 生成符合该类的结构化输出。

使用工具和函数调用

最后,我们来看如何使用 Ollama 的新功能进行工具和函数调用。以下是相关代码:

from langchain import OllamaFunctions# 定义工具函数
def get_current_weather(location: str, unit: str = "Celsius"):# 这里是获取当前天气的实现pass# 设置工具和函数调用
tools = {"get_current_weather": get_current_weather}
ollama_functions = OllamaFunctions(llm, tools=tools)# 调用模型进行函数调用
question = "What is the weather in Singapore?"
response = ollama_functions(prompt=question)print(response)

在上述代码中,我们定义了一个获取当前天气的工具函数,并使用 Ollama 进行函数调用。模型会根据输入的问题,自动调用相应的工具函数并返回结果。

通过以上示例,我们展示了如何在本地使用 Ollama 和 Llama 3 模型进行函数调用、生成 JSON 输出、定义结构化输出以及使用工具和函数调用。这些方法可以帮助我们在本地构建智能代理,而无需依赖云服务。

参考资料:

1.Function Calling with Local Models & LangChain - Ollama, Llama3 & Phi-3

2.论文:Gorilla: Large Language Model Connected with Massive APIs

这篇关于本地使用 Ollama 驱动 Llama 3,Phi-3 构建智能代理(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973611

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三