Flink DataSource介绍

2024-05-08 21:52
文章标签 介绍 flink datasource

本文主要是介绍Flink DataSource介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

Flink的Data Source(数据源、源算子)是Flink作业的起点,它定义了数据输入的来源。Flink可以从各种数据来源获取数据,例如文件系统、消息队列、数据库等。以下是对Flink Data Source的详细介绍:

概述:

  • Flink中的Data Source用于定义数据输入的来源。
  • 将数据源添加到Flink执行环境中,可以创建一个数据流。
  • Flink支持多种类型的数据源,包括内置数据源和自定义数据源。

内置数据源:

  • 基于集合构建:使用Flink的API(如fromCollection、fromElements等)将Java或Scala中的集合数据转化为数据流进行处理。
  • 基于文件构建:从文件系统中读取数据,支持多种文件格式,如CSV、JSON等。
  • 基于Socket构建:从Socket连接中读取数据,适用于实时流数据场景。

自定义数据源:

  • Flink允许用户通过实现SourceFunction接口或扩展RichParallelSourceFunction来自定义数据源。
  • 常见的自定义数据源包括从第三方系统连接器(如Kafka、RabbitMQ、MongoDB等)中读取数据。

添加数据源到Flink执行环境:

  • 使用StreamExecutionEnvironment.addSource(sourceFunction)方法将数据源添加到Flink执行环境中。
  • sourceFunction需要实现SourceFunction接口或扩展RichParallelSourceFunction。

数据流处理:

  • 一旦数据源被添加到Flink执行环境中,就可以创建一个数据流(DataStream)。
  • 接下来,可以使用Flink的各种算子(如map、filter、reduce等)对数据流进行转换处理。

输出结果:

  • 处理后的数据可以写入其他系统,如文件系统、数据库、消息队列等。
  • Flink支持多种输出方式,如使用DataStream的writeAsText、writeAsCsv等方法将数据写入文件,或使用Flink的连接器将数据写入Kafka、HBase等系统。

总之,Flink的Data Source是构建Flink数据流处理应用的重要组成部分。通过选择合适的数据源和输出方式,可以方便地构建高效、可靠的数据流处理应用。

样例

程序中添加数据源

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.addSource(new SourceMySQL()).print();env.execute("Flink add mysql sourc");

Flink 已经提供了若干实现好了的SourceFunctions也可以通过实现 SourceFunction 来自定义非并行的 source 或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source,

stream sources

StreamExecutionEnvironment 加载Source

基于集合:

  1. fromCollection(Collection)
  2. fromCollection(Iterator, Class)
  3. fromElements(T …)
  4. fromParallelCollection(SplittableIterator, Class)
  5. generateSequence(from, to)
    例如:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Event> input = env.fromElements(new Event(1, "ba", 4.0),new Event(2, "st", 5.0),new Event(3, "fo", 6.0),...
);

文件

  1. readTextFile(String filePath)
  2. readTextFile(String filePath, String charsetName)
  3. readFile(FileInputFormat inputFormat, String filePath)
    样例:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.readTextFile("file:///path/file");

Socket

  1. socketTextStream(String hostname, int port)
  2. socketTextStream(String hostname, int port, String delimiter)
  3. socketTextStream(String hostname, int port, String delimiter, long maxRetry)
    样例:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStream<Tuple2<String, Integer>> dataStream = env.socketTextStream("localhost", 8888) // 监听 localhost 的 8888端口过来的数据.flatMap(new Splitter()).keyBy(0).timeWindow(Time.seconds(5)).sum(1);

自定义资源

通过实现 SourceFunction 来自定义非并行的 source 或者实现 ParallelSourceFunction 接口或者扩展 RichParallelSourceFunction 来自定义并行的 source。
继承类

SourceFunction 非并行

SourceFunction 是一个用于定义数据源的函数接口。这个接口的实现通常负责从外部系统(如 Kafka、文件系统、数据库等)读取数据,并将这些数据作为 Flink 流处理或批处理作业的输入。

SourceFunction 通常与 Flink 的 DataStream API 一起使用,以定义和构建数据流处理任务。尽管 Flink 的内部实现和 API 可能会随着版本的更新而有所变化,但通常,一个 SourceFunction 会被实现为:

  1. 创建一个可以持续生成数据或等待外部数据到达的组件。
  2. 当有新数据到达时,将数据作为 Flink 的 DataStream 的一部分进行发射(emit)。

在 Flink 的内部,SourceFunction 可能会有多种不同的实现,具体取决于其要处理的数据源类型。例如,对于 Kafka 这样的消息队列,Flink 提供了专门的 Kafka 连接器和相应的 SourceFunction 实现,用于从 Kafka 主题中读取数据。

在实现自定义的 SourceFunction 时,你需要考虑以下几个方面:

  • 数据源的连接和断开连接逻辑。
  • 数据的读取和解析逻辑。
  • 如何在 Flink 运行时环境中优雅地处理可能的错误和失败。
  • 如何将读取的数据转换为 Flink 可以理解的格式(如 Tuple、POJO 或其他自定义类型)。

ParallelSourceFunction 并行

ParallelSourceFunction 是一个接口,用于定义并行数据源的行为。这个接口允许你创建自定义的数据源,这些数据源能够并行地读取数据并传递给 Flink 的数据处理管道。

ParallelSourceFunction 继承自 SourceFunction,但增加了并行处理的能力。当 Flink 任务需要并行处理多个数据流时,你可以通过实现 ParallelSourceFunction 来创建并行数据源。

Flink 还提供了一个 RichParallelSourceFunction 抽象类,它是 ParallelSourceFunction 的子类,并提供了更多的生命周期方法和上下文信息。使用 RichParallelSourceFunction 可以让你更容易地管理你的并行数据源,因为它提供了诸如 open()、close() 和 cancel() 等方法,这些方法可以在数据源的生命周期中的不同阶段被调用。

下面是一个简单的示例,演示了如何使用 RichParallelSourceFunction 创建一个并行数据源,该数据源生成递增的数字:

import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;  
public class IncrementingNumberSource extends RichParallelSourceFunction<Long> {  private volatile boolean running = true;  private long count = 0L;  @Override  public void run(SourceContext<Long> ctx) throws Exception {  while (running) {  synchronized (ctx.getCheckpointLock()) {  ctx.collect(count++);  // 这里可以添加一些休眠或其他逻辑来控制数据的生成速度  Thread.sleep(100);  }  }  }  @Override  public void cancel() {  running = false;  }  
}

在这个示例中,IncrementingNumberSource 类继承了 RichParallelSourceFunction,并覆盖了 run() 和 cancel() 方法。在 run() 方法中,我们创建了一个无限循环来生成递增的数字,并使用 ctx.collect() 方法将每个数字发送到 Flink 的数据处理管道中。在 cancel() 方法中,我们设置了一个标志来停止 run() 方法中的循环,以便在需要时可以优雅地关闭数据源。

自定义资源DEMO

/*** Desc: 自定义 source mysql 数据*/
public class SourceMySQL extends RichSourceFunction<Map<String, Object>> {PreparedStatement ps;private Connection connection;/*** open 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接。*/@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);connection = MySQLUtil.getConnection("com.mysql.jdbc.Driver","jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8","root","123456");String sql = "select * from ST;";ps = this.connection.prepareStatement(sql);}/*** 关闭连接和释放资源的动作*/@Overridepublic void close() throws Exception {super.close();if (connection != null) {connection.close();}if (ps != null) {ps.close();}}/*** DataStream 从run方法用来获取数据*/@Overridepublic void run(SourceContext<Map<String, Object>> ctx) throws Exception {ResultSet resultSet = ps.executeQuery();while (resultSet.next()) {Map<String, Object> rs = new HashMap<>();rs.put("id", resultSet.getInt("id"));rs.put("name", resultSet.getString("name").trim());ctx.collect(rs);}}@Overridepublic void cancel() {}
}

这篇关于Flink DataSource介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/971538

相关文章

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Spring Security介绍及配置实现代码

《SpringSecurity介绍及配置实现代码》SpringSecurity是一个功能强大的Java安全框架,它提供了全面的安全认证(Authentication)和授权(Authorizatio... 目录简介Spring Security配置配置实现代码简介Spring Security是一个功能强

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一

Java中 instanceof 的用法详细介绍

《Java中instanceof的用法详细介绍》在Java中,instanceof是一个二元运算符(类型比较操作符),用于检查一个对象是否是某个特定类、接口的实例,或者是否是其子类的实例,这篇文章... 目录引言基本语法基本作用1. 检查对象是否是指定类的实例2. 检查对象是否是子类的实例3. 检查对象是否

什么是ReFS 文件系统? ntfs和refs的优缺点区别介绍

《什么是ReFS文件系统?ntfs和refs的优缺点区别介绍》最近有用户在Win11Insider的安装界面中发现,可以使用ReFS来格式化硬盘,这是不是意味着,ReFS有望在未来成为W... 数十年以来,Windows 系统一直将 NTFS 作为「内置硬盘」的默认文件系统。不过近些年来,微软还在研发一款名

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程