用正向和逆向最大匹配算法进行中文分词

2024-05-08 18:48

本文主要是介绍用正向和逆向最大匹配算法进行中文分词,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.概述

        用正向和逆向最大匹配算法进行中文分词。

2.遇到的问题

        编码问题,Linux默认的编码是UTF-8编码,对于汉字,每个字占三个字节。而本文使用的语料为1998年1月的人民日报语料,为GB2312编码,每个汉字占两个字节。

        本文所用的Ubuntu Linux操作系统默认是不支持GB2312等中文编码的,因此需要对系统添加GB2312编码的支持。添加方式参见:

3.分词结果

        分词结果如下图所示:


        从图中可以看出,逆向最大匹配分词的准确率和召回率均大于正向最大匹配分词方法,但是幅度相差不是很大。

4.源代码

        源代码分为三个文件:

        segmentutil.cpp(对语料进行预处理),它是单独运行的,可以将原始语料制作成词典文件和测试文件。

        dictionary.h(词典头文件,初始化词典)和main.cpp(进行分词操作)这两个文件需要一起编译运行。可以对测试文件进行分词,该过程需要用到前面文件生成的词典文件和测试文件。

        (1)segmentutil.cpp(对语料进行预处理)

#include <string>
#include <iostream>
#include <fstream>
#include <cstdlib>using namespace std;/** 工具类* 功能:进行各种字符串操作、语料预处理操作*      含有2个字符串操作的函数 *      含有5个语料预处理相关的函数 */
class SegmentUtil{public:string removeLetters(string str_in);	//去掉字符串中的英文字母string& replace_all(string &str, string old_str, string new_str);	//置换字符串的特定字串void removeNum();			//去掉语料中的编号void spareLine();			//将语料进行分行void spareFile();			//将语料分为词典和测试语料void makeDict();			//构造词典void makeDict_2();			//构造词典
};/** 函数功能:删除词性标记(即去掉字符串中的英文字母)* 函数输入:含有词性标记的字符串* 函数输出:不含词性标记的字符串*/
string SegmentUtil::removeLetters(string str_in){char s[10000];int j = 0;for(int i = 0; i < str_in.length(); i++){if(!(str_in[i] >= 'a' && str_in[i] <= 'z' || str_in[i] >= 'A' && str_in[i] <= 'Z')){s[j] = str_in[i];j++;	}}s[j] = '\0';string str_out = s;return str_out;
}/** 函数功能:将字符串中的所有特定子串置换为新的字符串* 函数输入:str     需要进行操作的字符串*         old_str 旧的字符串*         new_str 新的字符串* 函数输出:置换完毕的字符串*/
string& SegmentUtil::replace_all(string &str, string old_str, string new_str){while(1){string::size_type pos(0);if((pos = str.find(old_str)) != string::npos){str.replace(pos, old_str.length(), new_str);}else{break;}}return str;
}/** 函数功能:去掉语料中每各段落前的编号* 函数输入:待处理的文件* 函数输出:处理完的文件*/
void SegmentUtil::removeNum(){ifstream fin("199801_1.txt");if(!fin){cerr << "removeNum : Unable open input file !" << endl;exit(-1);}ofstream fout("199801_2.txt");if(!fout){cerr << "removeNum : Unable open output file !" << endl;exit(-1);}string str_in = "";string str_out = "";while(getline(fin, str_in, '\n')){if(str_in.find('/') == 18){str_out = str_in.substr(22, str_in.length() - 22);}fout << str_out << endl;}fin.close();fout.close();
}/** 函数功能:将语料进行分行* 函数输入:待处理的文件,文件中多个句子在一个段落中,每个段落为一行* 函数输出:处理完的文件,每个句子为一行*/
void SegmentUtil::spareLine(){ifstream fin("199801_2.txt");if(!fin){cerr << "makeLine : Unable open input file !" << endl;exit(-1);}ofstream fout("199801_3.txt");if(!fout){cerr << "makeLine : Unable open output file !" << endl;exit(-1);}string str_in = "";string str_out = "";while(getline(fin, str_in, '\n')){if(str_in.find('/') == 18){str_out = str_in.substr(22, str_in.length() - 22);}fout << str_out << endl;}fin.close();fout.close();
}/** 函数功能:按照一定的比例,将原始语料分为词典语料和测试语料,默认比例为9:1。* 函数输入:分好行的语料文件,每个句子为一行* 函数输出:两个文件,文件1用于构造词典,文件2用于测试*/
void SegmentUtil::spareFile(){ifstream fin("199801_003.txt");if(!fin){cerr << "spareLine : Unable open input file !" << endl;exit(-1);}ofstream fout_1("dict_1.txt");if(!fout_1){cerr << "spareLine : Unable open output file : dict.txt !" << endl;exit(-1);}ofstream fout_2("test.txt");if(!fout_2){cerr << "spareLine : Unable open output file : test.txt !" << endl;exit(-1);}long count = 0;string str_in = "";string str_out = "";while(getline(fin, str_in, '\n')){//过滤掉词性标记,即英文字母str_out = removeLetters(str_in);//以句子为单位,将语料按比例分为两个文件if(count % 10 == 0){fout_2 << str_out << endl;}else{fout_1 << str_out << endl;}count++;}fin.close();fout_1.close();fout_2.close();
}/** 函数功能:构造词典,使每个词语为一行* 函数输入:分好行的语料文件,每个句子为一行* 函数输出:初步的词典文件,每个词语为一行,但可能有空行*/
void SegmentUtil::makeDict(){ifstream fin("dict_1.txt");if(!fin){cerr << "makeDict : Unable open input file !" << endl;exit(-1);}ofstream fout("dict_2.txt");if(!fout){cerr << "makeDict : Unable open output file !" << endl;exit(-1);}string line = "";while(getline(fin, line, '\n')){//将分词标记(/)和中文标点置换为回车for(int i = 0; i < line.length(); i++){unsigned char ch = (unsigned char) line[i];if(ch == '/'){line[i] = '\n';	}}line = replace_all(line, ",", "\n");line = replace_all(line, "。", "\n");line = replace_all(line, "?", "\n");line = replace_all(line, "!", "\n");line = replace_all(line, "《", "\n");line = replace_all(line, "》", "\n");line = replace_all(line, "”", "\n");line = replace_all(line, "“", "\n");line = replace_all(line, ":", "\n");line = replace_all(line, "、", "\n");line = replace_all(line, "(", "\n");line = replace_all(line, ")", "\n");line = replace_all(line, "[", "\n");line = replace_all(line, "]", "\n");fout << line << endl;}fin.close();fout.close();
}/** 函数功能:构造词典,使每个词语为一行(去掉词典中的空行)* 函数输入:初步的词典文件,每个词语为一行,但可能有空行* 函数输出:最终的语料文件,每个词语为一行,去掉了空行*/
void SegmentUtil::makeDict_2(){ifstream fin("dict_2.txt");if(!fin){cerr << "makeDict_2 : Unable open input file !" << endl;exit(-1);}ofstream fout("dict_3.txt");if(!fout){cerr << "makeDict_2 : Unable open output file !" << endl;exit(-1);}string line = "";//去掉空行while(getline(fin, line, '\n')){if(!line.empty()){fout << line << endl;}}fin.close();fout.close();
}int main(){SegmentUtil seg;//1.将原始语料分为词典语料和测试语料seg.spareFile();//2.构造词典seg.makeDict();seg.makeDict_2();
}


        (2)dictionary.h(词典头文件,初始化词典)

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <set>
#include <cstdlib>using namespace std;class Dictionary{private:string strline;		//保存每行内容string word;		//保存一个词语set<string> word_set;	//词典,用集合表示public:Dictionary();		//构造函数,初始化词典~Dictionary();int findWord(string word);	//在词典中查找特定的词语
};Dictionary::Dictionary(){//读取词典文件fstream fin("dict_3.txt");if(!fin){cerr << "open file error !" << endl;exit(-1);}//将每个词语加入集合while(getline(fin, strline, '\n')){istringstream istr(strline);istr >> word;		//word_set.insert(word);	//}
}Dictionary::~Dictionary(){}int Dictionary::findWord(string word){if(word_set.find(word) != word_set.end()){return 1;} else {return 0;}
}


        (3)main.cpp(进行分词操作)

#include <cstdlib>
#include "dictionary.h"
#include <vector>
#include <iomanip>
#include <map>const int MaxWordLength = 10;	//最大词长为10个字节(即5个汉字)
const char Separator = '/';	//词界标记Dictionary word_dict;		//初始化一个词典/** 函数功能:对字符串用最大匹配算法(正向)处理* 函数输入:汉字字符串* 函数输出:分好词的字符串*/
string SegmentSentence_1(string s1){string s2 = "";		//用s2存放分词结果while(!s1.empty()){int len = s1.length();	//取输入串长度if(len > MaxWordLength){len = MaxWordLength;	//只在最大词长范围内进行处理}string w = s1.substr(0, len);int n = word_dict.findWord(w);	//在词典中查找相应的词while(len > 2 && n == 0){len -= 2;	//从候选词右边减掉一个汉字,将剩下的部分作为候选词w = s1.substr(0, len);n = word_dict.findWord(w);}s2 = s2 + w + Separator;s1 = s1.substr(w.length(), s1.length() - w.length());}return s2;
}/** 函数功能:对字符串用最大匹配算法(逆向)处理* 函数输入:汉字字符串* 函数输出:分好词的字符串*/
string SegmentSentence_2(string s1){string s2 = "";		//用s2存放分词结果while(!s1.empty()){int len = s1.length();	//取输入串长度if(len > MaxWordLength){len = MaxWordLength;	//只在最大词长范围内进行处理}string w = s1.substr(s1.length() - len, len);int n = word_dict.findWord(w);	//在词典中查找相应的词while(len > 2 && n == 0){len -= 2;	//从候选词左边减掉一个汉字,将剩下的部分作为候选词w = s1.substr(s1.length() - len, len);n = word_dict.findWord(w);}w = w + Separator;s2 = w + s2;s1 = s1.substr(0, s1.length() - len);}return s2;
}/** 函数功能:对句子进行最大匹配法处理,包含对特殊字符的处理* 函数输入:1.含有汉字、英文符号的字符串*         2.flag=1调用正向最大匹配算法,flag=2调用逆向最大匹配算法* 函数输出:分好词的字符串*/
string SegmentSentenceMM(string s1, int flag){string s2 = "";	//用s2存放分词结果int i;int dd;while(!s1.empty()){unsigned char ch = (unsigned char)s1[0];if(ch < 128){//处理西文字符i = 1;dd = s1.length();while(i < dd && ((unsigned char)s1[i] < 128) && (s1[i] != 10) && (s1[i] != 13)){//s1[i]不能是换行符或回车符i++;}//中止循环条件:出现中文字符、换行或者回车if(i == 1 && (ch == 10 || ch == 13)){//如果是换行或回车符,将它拷贝给s2输出s2 += s1.substr(0, i);}else{s2 += s1.substr(0, i) + Separator;}s1 = s1.substr(i, dd);continue;}else{if(ch < 176){//中文标点等非汉字字符i = 0;dd = s1.length();//获取中文双字节特殊字符(非汉字、非中文标点),中止循环条件:超过长度、出现中文标点符号、出现汉字while(i < dd && ((unsigned char)s1[i] < 176) && ((unsigned char)s1[i] >= 161)&& (!((unsigned char)s1[i] == 161 && ((unsigned char)s1[i+1] >= 162 && (unsigned char)s1[i+1] <= 168)))&& (!((unsigned char)s1[i] == 161 && ((unsigned char)s1[i+1] >= 171 && (unsigned char)s1[i+1] <= 191)))&& (!((unsigned char)s1[i] == 163 && ((unsigned char)s1[i+1] == 161 || (unsigned char)s1[i+1] == 168||   (unsigned char)s1[i+1] == 169 || (unsigned char)s1[i+1] == 172 || (unsigned char)s1[i+1] == 186 ||   (unsigned char)s1[i+1] == 187 || (unsigned char)s1[i+1] == 191)))){//假定没有半个汉字i = i + 2;}//出现中文标点if(i == 0){i = i + 2;}//中文标点每个加一个分词标记;其他非汉字双字节字符连续输出,只加一个分词标记s2 += s1.substr(0, i) + Separator;s1 = s1.substr(i, dd);continue;}}//以下处理汉字串i = 2;dd = s1.length();while(i < dd && (unsigned char)s1[i] >= 176){i += 2;}if(flag == 1){//调用正向最大匹配s2 += SegmentSentence_1(s1.substr(0, i));}else{//调用逆向最大匹配s2 += SegmentSentence_2(s1.substr(0, i));}s1 = s1.substr(i, dd); }return s2;
}/** 函数功能:删除分词标记(即去掉字符串中的/)* 函数输入:含有分词标记的字符串* 函数输出:不含分词标记的字符串*/
string removeSeparator(string str_in){char s[10000];int j = 0;for(int i = 0; i < str_in.length(); i++){if(!(str_in[i] == '/')){s[j] = str_in[i];j++;}}s[j] = '\0';string str_out = s;return str_out;
}/** 函数功能:计算切分标记的位置* 函数输入:1.strline_in未进行切分的汉字字符串2.strline_right进行切分后的汉字字符串* 函数输出:vecetor,其中存放了strline_in中哪些位置放置了分词标记*         注意:vector中不包含最后标记的位置,但是包含位置0。*/
vector<int> getPos(string strline_right, string strline_in){int pos_1 = 0;int pos_2 = -1;int pos_3 = 0;string word = "";vector<int> vec;int length = strline_right.length();while(pos_2 < length){//前面的分词标记pos_1 = pos_2;//后面的分词标记pos_2 = strline_right.find('/', pos_1 + 1);if(pos_2 > pos_1){//将两个分词标记之间的单词取出word  = strline_right.substr(pos_1 + 1, pos_2 - pos_1 - 1);//根据单词去输入序列中查出出现的位置pos_3 = strline_in.find(word, pos_3);//将位置存入数组vec.push_back(pos_3);pos_3 = pos_3 + word.size();}else{break;}}return vec;
}/** 函数功能:获取单个句子切分的结果统计* 函数输入:1.vec_right 正确的分词标记位置集合*         2.vec_out   函数切分得到的分词标记位置集合* 函数输出:返回一个veceor,含有两个元素*         1.不该切分而切分的数量*         2.该切分而未切分的数量*/
vector<int> getCount(vector<int> vec_right, vector<int> vec_out){vector<int> vec;	//存放计算结果map<int, int> map_result;int length_1 = 0;	//map改变前的长度int length_2 = 0;	//map改变后的长度int count_1 = 0;	//不该切分而切分的数量int count_2 = 0;	//该切分而未切分的数量for(int i = 0; i < vec_right.size(); i++){map_result[vec_right[i]] = 0;}length_1 = map_result.size();for(int i = 0; i < vec_out.size(); i++){++map_result[vec_out[i]];}length_2 = map_result.size();count_1 = length_2 - length_1;for(int i = 0; i < vec_right.size(); i++){if(map_result[vec_right[i]] == 0){++count_2;}}vec.push_back(count_1);vec.push_back(count_2);return vec;
}/** 主函数:进行分词并统计分词结果****/
int main(int argc, char *argv[]){string strline_right;	//输入语料:用作标准分词结果string strline_in;	//去掉分词标记的语料(用作分词的输入)string strline_out_1;	//正向最大匹配分词完毕的语料string strline_out_2;	//逆向最大匹配分词完毕的语料ifstream fin("test.txt");	//打开输入文件if(!fin){cout << "Unable to open input file !" << argv[1] << endl;exit(-1);}ofstream fout("result.txt");	//确定输出文件if(!fout){cout << "Unable to open output file !" << endl;exit(-1);}long count = 0;	//句子编号long count_right_all = 0;	//准确的切分总数long count_out_1_all = 0;	//正向匹配切分总数long count_out_2_all = 0;	//逆向匹配切分总数long count_out_1_right_all = 0;	//正向匹配切分正确总数long count_out_2_right_all = 0;	//逆向匹配切分正确总数while(getline(fin, strline_right, '\n')){if(strline_right.length() > 1){//去掉分词标记strline_in = removeSeparator(strline_right);//正向最大匹配分词strline_out_1 = strline_right;strline_out_1 = SegmentSentenceMM(strline_in, 1);//逆向最大匹配分词strline_out_2 = strline_right;strline_out_2 = SegmentSentenceMM(strline_in, 2);//输出结果count++;cout << "----------------------------------------------" << endl;cout << "句子编号:" << count << endl;cout << endl;cout << "待分词的句子长度: " << strline_in.length() << "  句子:" << endl;cout << strline_in << endl;cout << endl;cout << "标准比对结果长度: " << strline_right.length() << "  句子:" << endl;cout << strline_right << endl;cout << endl;cout << "正向匹配分词长度: " << strline_out_1.length() << "  句子:" << endl;cout << strline_out_1 << endl;cout << endl;cout << "逆向匹配分词长度: " << strline_out_2.length() << "  句子:" << endl;cout << strline_out_2 << endl;cout << endl;//计算准确率、召回率//Rev()vector<int> vec_right = getPos(strline_right, strline_in);vector<int> vec_out_1 = getPos(strline_out_1, strline_in);vector<int> vec_out_2 = getPos(strline_out_2, strline_in);cout << "标准结果:" << endl;for(int i = 0; i < vec_right.size(); i++){cout << setw(4) << vec_right[i];}cout << endl;cout << "正向匹配结果:" << endl;for(int i = 0; i < vec_out_1.size(); i++){cout << setw(4) << vec_out_1[i];}cout << endl;cout << "逆向匹配结果:" << endl;for(int i = 0; i < vec_out_2.size(); i++){cout << setw(4) << vec_out_2[i];}cout << endl;vector<int> vec_count_1 = getCount(vec_right, vec_out_1);vector<int> vec_count_2 = getCount(vec_right, vec_out_2);//准确的切分数量int count_right = vec_right.size();//切分得到的数量int count_out_1 = vec_out_1.size();int count_out_2 = vec_out_2.size();//切分正确的数量int count_out_1_right = count_out_1 - vec_count_1[0] - vec_count_1[1];int count_out_2_right = count_out_2 - vec_count_2[0] - vec_count_2[1];cout << "正向最大匹配:" << endl;	cout << "  不该切分而切分的数量:" << vec_count_1[0] << endl;cout << "  该切分而未切分的数量:" << vec_count_1[1] << endl;cout << "逆向最大匹配:" << endl;	cout << "  不该切分而切分的数量:" << vec_count_2[0] << endl;cout << "  该切分而未切分的数量:" << vec_count_2[1] << endl;count_right_all += count_right;count_out_1_all += count_out_1;count_out_2_all += count_out_2;count_out_1_right_all += count_out_1_right;count_out_2_right_all += count_out_2_right;}}double kk_1 = (double)count_out_1_right_all / count_out_1_all;	//正向准确率double kk_2 = (double)count_out_1_right_all / count_right_all;	//正向召回率double kk_3 = (double)count_out_2_right_all / count_out_2_all;	//逆向准确率double kk_4 = (double)count_out_2_right_all / count_right_all;	//逆向召回率cout << "----------------------------------" << endl;cout << endl;cout << "统计结果:" << endl;cout << "正向准确率:" << kk_1*100 << "%    正向召回率:" << kk_2*100 << "%" << endl;cout << "逆向准确率:" << kk_3*100 << "%    逆向召回率:" << kk_4*100 << "%" << endl;return 0;
}



这篇关于用正向和逆向最大匹配算法进行中文分词的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971139

相关文章

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

Nginx路由匹配规则及优先级详解

《Nginx路由匹配规则及优先级详解》Nginx作为一个高性能的Web服务器和反向代理服务器,广泛用于负载均衡、请求转发等场景,在配置Nginx时,路由匹配规则是非常重要的概念,本文将详细介绍Ngin... 目录引言一、 Nginx的路由匹配规则概述二、 Nginx的路由匹配规则类型2.1 精确匹配(=)2

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代