代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零

本文主要是介绍代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1049. 最后一块石头的重量 II

思路:

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。

是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲

1.确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

2.确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3.dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

4.确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

5.举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

1049.最后一块石头的重量II

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码:

一维DP版

class Solution:def lastStoneWeightII(self, stones: List[int]) -> int:  total_sum = sum(stones)target = total_sum // 2dp = [0] * 15001 # dp = [0] * (target + 1) 也可以for stone in stones:  # 遍历物品for j in range(target, stone - 1, -1):  # 遍历背包dp[j] = max(dp[j], dp[j - stone] + stone)return total_sum - dp[target] - dp[target]
  • 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
  • 空间复杂度:O(m)

494. 目标和

思路:

建议不懂的同学自己先用二维数组来做,比较好理解,理解了之后再用一维数组。
1. 含义:dp【i】【j】:从下标为【0...i】的物品里任取,填满j这么⼤容积的包,有dp【i】【j】种⽅法
2. 递推式:dp【i】【j】 = dp【i-1】【j】 + dp【i-1】[j-nums【i】]
dp【i-1】【j】是不将物品i放入背包的方式数,dp【i-1】[j-nums【i】]是将物品i放入背包的方式数
3. 初始化:dp【0】【0】 = 1 表示装满容量为0的背包,有1种⽅法,就是装0件物品。
如果nums【0】在范围内的话,dp【0】[nums【0】] = 1
其他全为0
4. 计算顺序:顺序,行优先

5.举例推导dp数组

代码:

二维dp数组

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和# 创建二维动态规划数组,行表示选取的元素数量,列表示背包容积dp = [[0] * (target_sum + 1) for _ in range(len(nums))]# 初始化第一行dp[0][0] = 1for j in range(target_sum + 1):if j==nums[0]:dp[0][j]=1# 初始化第一列# 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案# n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)num_zeros = 0for i in range(len(nums)):  if nums[i] == 0:  num_zeros += 1  dp[i][0] = 2 ** num_zeros# 动态规划过程for i in range(1, len(nums)):for j in range(1, target_sum + 1):if j < nums[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = dp[i-1][j] + dp[i - 1][j - nums[i]]return dp[len(nums)-1][target_sum]  # 返回达到目标和的方案数
  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(n × m)

一维dp数组

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和dp = [0] * (target_sum + 1)  # 创建动态规划数组,初始化为0dp[0] = 1  # 当目标和为0时,只有一种方案,即什么都不选for num in nums:for j in range(target_sum, num - 1, -1):dp[j] += dp[j - num]  # 状态转移方程,累加不同选择方式的数量return dp[target_sum]  # 返回达到目标和的方案数
  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m)

474. 一和零

思路:

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。(容量为i,j的背包,最多能装dp[i][j]个物品)

2.确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

3.dp数组如何初始化

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。(保证初始值不会影响递推公式的运算)

4.确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

5.举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

代码:

class Solution:def findMaxForm(self, strs: List[str], m: int, n: int) -> int:dp = [[0] * (n + 1) for _ in range(m + 1)]  # 创建二维动态规划数组,初始化为0for s in strs:  # 遍历物品zeroNum = s.count('0')  # 统计0的个数oneNum = len(s) - zeroNum  # 统计1的个数for i in range(m, zeroNum - 1, -1):  # 遍历背包容量且从后向前遍历for j in range(n, oneNum - 1, -1):dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)  # 状态转移方程return dp[m][n]
  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

这篇关于代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971093

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计