FastText 算法原理及使用方法

2024-05-08 18:12

本文主要是介绍FastText 算法原理及使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
  • 2. 模型架构
    • 2.1 Hierarchical Softmax
    • 2.2 n-gram 特征
  • 3. 训练及评估
  • 4. 使用
  • 5. 参考


1. 前言

FastText 是一个由 Facebook AI Research 在2016年开源的文本分类器,它的设计旨在保持高分类准确度的同时,显著提升训练和预测的速度。

论文:《Enriching Word Vectors with Subword Information》

github 源码:FastText

常见的文本分类算法:《常用的文本分类算法概览》

2. 模型架构

FastText 的模型架构与 word2vec 中的连续词袋模型(CBOW)相似,但其任务是分类而不是生成词向量。它包括以下组成部分:

(1)输入层:接收文本数据,通常是将文本转化为词序列或者词袋表示。
(2)隐藏层:对输入数据进行变换,通常涉及词向量的查找或计算。
(3)输出层:使用层次 softmax 或其他技术来预测文本所属的类别

如下图:
在这里插入图片描述
其中,上图仅仅表示有1个隐藏层的情况, w 1 , . . . , w n w_1,...,w_n w1,...,wn 表示句子中的每一个词的词嵌入向量。

2.1 Hierarchical Softmax

当目标类别数量很大时,计算线性分类器花费的计算成本高昂。为了提高运行效率,FastText 使用了基于 Huffman 树的层次化 softmax。在训练时,计算复杂度降低到 O(d log2(K)),其中 d 是隐藏层的维度,K 是目标类别的数量。

Hierarchical Softmax 讲解参考这里

2.2 n-gram 特征

词袋模型对词序不变,但考虑词序可以提高性能。FastText 使用 n-gram 作为额外特征来捕获局部词序信息,这样做既高效又能达到与显式使用词序的方法相当的性能。

3. 训练及评估

根据论文内容:
训练:FastText 的训练类似于 word2vec,使用随机梯度下降(SGD)和反向传播,学习率线性衰减。模型异步在多个 CPU 上进行训练。

模型性能:FastText 在多个数据集上的性能与基于深度学习的方法相当,同时在训练和评估上快几个数量级。

效率:FastText 能够在标准多核 CPU 上,在不到十分钟的时间内训练超过十亿个单词,并且在不到一分钟内对五十万个句子进行分类。

实验
在这里插入图片描述

4. 使用

python 安装 fasttext

pip install fasttext

python 训练

def train(train_dataset_path: str, test_dataset_path: str, model_path: str):model = fasttext.train_supervised(train_dataset_path)model.save_model(model_path)print(model.test(test_dataset_path))

train_supervised() 是一个用于训练监督学习模型的函数,通常用于文本分类任务,参数:

    input             # training file path (required)lr                # learning rate [0.1]dim               # size of word vectors [100]ws                # size of the context window [5]epoch             # number of epochs [5]minCount          # minimal number of word occurences [1]minCountLabel     # minimal number of label occurences [1]minn              # min length of char ngram [0]maxn              # max length of char ngram [0]neg               # number of negatives sampled [5]wordNgrams        # max length of word ngram [1]loss              # loss function {ns, hs, softmax, ova} [softmax]bucket            # number of buckets [2000000]thread            # number of threads [number of cpus]lrUpdateRate      # change the rate of updates for the learning rate [100]t                 # sampling threshold [0.0001]label             # label prefix ['__label__']verbose           # verbose [2]pretrainedVectors # pretrained word vectors (.vec file) for supervised learning []

下面介绍主要参数:

  1. input: 输入数据文件的路径或者文件对象。输入文件应该是一个包含训练样本的文本文件,每一行代表一个样本,样本由文本内容和标签组成,二者之间用制表符或空格分隔。

  2. lr (float, optional): 学习率(learning rate),用于控制模型参数更新的步长,默认为 0.1。

  3. epoch (int, optional): 迭代次数,即训练过程中整个训练数据集被遍历的次数,默认为 5。

  4. wordNgrams (int, optional): 用于构建 n-gram 特征的窗口大小,通常用于捕捉词序信息,默认为 1,表示只考虑单个词的特征。

  5. dim (int, optional): 词向量的维度,默认为 100。较高的维度可能会导致更丰富的特征表示,但也会增加模型的复杂度和训练时间。

  6. loss (str, optional): 损失函数,用于优化模型参数。可选值包括 “hs”(hierarchical softmax)和 “ns”(negative sampling),默认为 “softmax”。

  7. thread (int, optional): 用于并行训练的线程数,默认为 12。增加线程数可以加快训练速度,但也会增加计算资源的消耗。

  8. label_prefix (str, optional): 标签的前缀,默认为 __label__。用于标识样本的类别。

  9. pretrained_vectors (str, optional): 预训练的词向量文件的路径,用于初始化模型参数。如果提供了预训练的词向量,则模型会在训练开始时加载这些向量,并根据需要微调。

  10. verbose (int, optional): 控制训练过程中的输出信息的详细程度。默认为 2,表示输出训练进度和性能指标。

训练的数据格式:

__label__0 第一种是在上下文中选定多个词汇作为输入,选定一个单词作为输出
__label__1 将每个词的one-hot编码与哈夫曼编码计算出来。

其中 __label__ 为前缀,可以在参数 label_prefix 修改,0、1是所属的类别。

5. 参考

《Enriching Word Vectors with Subword Information》

欢迎关注本人,我是喜欢搞事的程序猿;一起进步,一起学习;

欢迎关注知乎/CSDN:SmallerFL

也欢迎关注我的wx公众号(精选高质量文章):一个比特定乾坤

这篇关于FastText 算法原理及使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971063

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客