ICP算法(Iterative Closest Point)及VTK实现

2024-05-08 09:58

本文主要是介绍ICP算法(Iterative Closest Point)及VTK实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:ICP算法(Iterative Closest Point)及VTK实现 作者:小星星恋上大太阳
转载而来 ,自己学的医学图像 ,所以算法原理尚可借鉴,这篇原理讲的很不错 网上搜了很多 始终不明白 似乎这次能知道个来龙去脉了。非常感谢该版主~~~

ICP算法最初由Besl和Mckey提出,是一种基于轮廓特征的点配准方法。基准点在CT图像坐标系及世界坐标系下的坐标点集P = {Pi, i = 0,1, 2,…,k}及U = {Ui,i=0,1,2,…,n}。其中,U与P元素间不必存在一一对应关系,元素数目亦不必相同,设k ≥ n。配准过程就是求取 2 个坐标系间的旋转和平移变换矩阵,使得来自U与P的同源点间距离最小。其过程如下:

(1)计算最近点,即对于集合U中的每一个点,在集合P中都找出距该点最近的对应点,设集合P中由这些对应点组成的新点集为Q = {qi,i = 0,1,2,…,n}。

(2)采用最小均方根法,计算点集 U 与 Q 之间的配准,使 得到配准变换矩阵 R,T,其中R是 3×3 的旋转矩阵,T 是 3×1 的平移矩阵。

(3)计算坐标变换,即对于集合U,用配准变换矩阵R,T进行坐标变换,得到新的点集U1,即U1 = RU + T

(4)计算U1与Q之间的均方根误差,如小于预设的极限值ε,则结束,否则,以点集U1替换U,重复上述步骤。

VTK中有一个类vtkIterativeClosestPointTransform实现了ICP 算法,并将ICP算法保存在一个4×4的齐次矩阵中。那么如何使用这个类的函数内?以下是一个可参考的DEMO,功能是获得两个坐标系内的点之间的对应关系,也就是求这两个坐标系之间的平移和旋转矩阵。

#include <vtkMatrix4x4.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkLandmarkTransform.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkCellArray.h>

#include <vtkIterativeClosestPointTransform.h>

#include <vtkTransformPolyDataFilter.h>

#include <vtkLandmarkTransform.h> //to set type to ridgid body

#include <vtkMath.h>

#include <vtkMatrix4x4.h>

#include <iostream>

 

vtkPolyData* CreatePolyData();

vtkPolyData* PerturbPolyData(vtkPolyData* polydata);

 

int _tmain(int argc, _TCHAR* argv[])

{

    vtkPolyData* TargetPolydata = CreatePolyData();//创建目标坐标系内的点集

    //创建源坐标系内的点,实际上是通过给目标坐标系内点集加一个扰动实现的

    vtkPolyData* SourcePolydata = PerturbPolyData(TargetPolydata);

    //开始用vtkIterativeClosestPointTransform类实现 ICP算法

vtkIterativeClosestPointTransform * icp = vtkIterativeClosestPointTransform::New();

    icp->SetSource(SourcePolydata);

    icp->SetTarget(TargetPolydata);

    icp->GetLandmarkTransform()->SetModeToRigidBody();  icp->SetMaximumNumberOfIterations(20);

    icp->StartByMatchingCentroidsOn();

    icp->Modified();

    icp->Update();

 

    vtkMatrix4x4* M = icp->GetMatrix();

    std::cout << "The resulting matrix is: " << *M << std::cout;

//以下是为更方便地显示矩阵,统一了矩阵内数字显示形式,矩阵内数字形如:1.08e-001

    for(int i = 0;i<= 3;i++)

    {

        printf("n");

        for(int j = 0;j <= 3;j++)

        {

            printf("%et",M->Element[i][j]);

        }

    }

    SourcePolydata->Delete();

    TargetPolydata->Delete();

    getchar();

    return 0;

}

 

vtkPolyData* CreatePolyData()

{

//This function creates a set of 5 points (the origin and a point unit distance along each axis)

    vtkPoints* SourcePoints = vtkPoints::New();

    vtkCellArray* SourceVertices = vtkCellArray::New();

    //create three points and create vertices out of them

    vtkIdType pid[1]; //记录下一个要加入的点在vtkPoints 中存储序号

    double Origin[3] = {0.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(Origin);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint1[3] = {1.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint1);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint2[3] = {0.0, 1.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint2);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint3[3] = {1.0, 1.0, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint3);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint4[3] = {0.5, 0.5, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint4);

    SourceVertices->InsertNextCell(1,pid);

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->SetPoints(SourcePoints); //把点导入的polydata中去

    polydata->SetVerts(SourceVertices);

    return polydata;

}

 

vtkPolyData* PerturbPolyData(vtkPolyData* OldPolydata)

{

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->DeepCopy(OldPolydata);

    vtkPoints* Points = polydata->GetPoints();

    size_t Sum = Points->GetNumberOfPoints();

    double p[3];

    Points->GetPoint(1, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(1, p);///

    Points->GetPoint(3, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(3, p);//

    Points->GetPoint(4, p);

    p[0] = sqrt(2.0)/4.0;

    p[2] = sqrt(2.0)/4.0;

    Points->SetPoint(4, p);//

    return polydata;

}

不过VTK计算出来的矩阵好像是反的,即

 = RU + T (其中Q 是源坐标系,U是目标坐标系,也就是我给每个点加了扰动的后的坐标系)

我是照着http://www.vtk.org/Wiki/Iterative_Closest_Points_(ICP)_Transform内的源程序改写出以上代码的,去掉了原来的随机扰动等部分,取的点很简单很容易验证算出来的旋转和平移矩阵是否正确。

这篇关于ICP算法(Iterative Closest Point)及VTK实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970012

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM