【智能优化算法】海象优化器(Walrus optimizer,WO)

2024-05-08 04:44

本文主要是介绍【智能优化算法】海象优化器(Walrus optimizer,WO),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海象优化器(Walrus optimizer,WO)是期刊“EXPERT SYSTEMS WITH APPLICATIONS”(中科院一区 IF 8.3)的2024年智能优化算法

01.引言

海象优化器(Walrus optimizer,WO)的灵感来自海象通过接收关键信号(危险信号和安全信号)选择迁徙、繁殖、栖息、觅食、聚集和逃跑的行为。为了测试所提出算法的能力,使用了IEEE(电气和电子工程师协会)2021年进化计算大会(CEC)的23个标准函数和基准套件。此外,为了评估所提出的算法在解决各种现实优化问题中的实用性,对6个标准的经典工程优化问题进行了检验和比较。出于统计目的,通过考虑预定义的停止准则,进行100次独立的优化运行,以确定统计度量,包括程序的平均值、标准差和计算时间。

02.优化算法的流程

03.优化算法论文中的效果展示

04.部分代码

function [Best_Score,Best_Pos,Convergence_curve]=WO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% Initialize Best_pos and Second_pos
Best_Pos=zeros(1,dim); Second_Pos=zeros(1,dim);
Best_Score=inf; Second_Score=inf;%change this to -inf for maximization problems
GBestX=repmat(Best_Pos,SearchAgents_no,1);
%Initialize the positions of search agents
X=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
% fitness=inf(SearchAgents_no,1);
P=0.4; % Proportion of females
F_number=round(SearchAgents_no*P); % Number of females
M_number=F_number; % The males are equal in number to the females
C_number=SearchAgents_no-F_number-M_number; % Number of childrent=0;% Loop counter
% fobj = @(x) funtest(x);
while t<Max_iterfor i=1:size(X,1)Flag4ub=X(i,:)>ub;Flag4lb=X(i,:)<lb;X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Check boundriesfitness=fobj(X(i,:)); % Calculate objective functionif fitness<Best_ScoreBest_Score=fitness;Best_Pos=X(i,:); % Update Best_posendif fitness>Best_Score && fitness<Second_ScoreSecond_Score=fitness;Second_Pos=X(i,:); % Update Second_posendendAlpha=1-t/Max_iter;Beta=1-1/(1+exp((1/2*Max_iter-t)/Max_iter*10));A=2*Alpha; % A decreases linearly fron 2 to 0r1=rand();R=2*r1-1;Danger_signal=A*R;r2=rand();Satey_signal=r2;if abs(Danger_signal)>=1r3=rand();Rs=size(X,1);Migration_step=(Beta*r3^2)*(X(randperm(Rs),:)-X(randperm(Rs),:));X=X+Migration_step;elseif abs(Danger_signal)<1if Satey_signal>=0.5for i = 1:M_numberxy=zeros(M_number,0);base=7;xy(i,1)=hal(i,base);M=[];m1=xy(i,:);m1=lb+m1.*(ub-lb);M=[M; m1];X(i,:)=M;endfor j = M_number+1:M_number+F_numberX(j,:) = X(j,:)+Alpha*(X(i,:)-X(j,:))+(1-Alpha)*(GBestX(j,:)-X(j,:));endfor i = SearchAgents_no-C_number+1:SearchAgents_noP=rand;o=GBestX(i,:)+X(i,:).*levyFlight(dim);X(i,:)=P*(o-X(i,:));endendif Satey_signal<0.5 && abs(Danger_signal)>=0.5for i = 1:SearchAgents_nor4=rand;X(i,:)=X(i,:)*R-abs(GBestX(i,:)-X(i,:))*r4^2;endendif Satey_signal<0.5 && abs(Danger_signal)<0.5for i=1:size(X,1)for j=1:size(X,2)theta1=rand();a1=Beta*rand()-Beta;b1=tan(theta1.*pi);X1=Best_Pos(j)-a1*b1*abs(Best_Pos(j)-X(i,j));theta2=rand();a2=Beta*rand()-Beta;b2=tan(theta2.*pi);X2=Second_Pos(j)-a2*b2*abs(Second_Pos(j)-X(i,j));X(i,j)=(X1+X2)/2;endendendendt=t+1;Convergence_curve(t)=Best_Score;
end
end
function halton=hal(index,base)
result=0;
f=1/base;
i=index;
while(i>0)result=result+f*mod(i,base);i=floor(i/base);f=f/base;
end
halton=result;
end
function [ o ]=levyFlight(d)beta=3/2;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);o=step;
end

05.本代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复智能优化算法本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

这篇关于【智能优化算法】海象优化器(Walrus optimizer,WO)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/969338

相关文章

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分