VALSE 2024 Tutorial内容总结--开放词汇视觉感知

2024-05-08 04:28

本文主要是介绍VALSE 2024 Tutorial内容总结--开放词汇视觉感知,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视觉与学习青年学者研讨会(VALSE)旨在为从事计算机视觉、图像处理、模式识别与机器学习研究的中国青年学者提供一个广泛而深入的学术交流平台。该平台旨在促进国内青年学者的思想交流和学术合作,以期在相关领域做出显著的学术贡献,并提升中国学者在国际学术舞台上的影响力。

2024年视觉与学习青年学者研讨会(VALSE 2024)于55日到7日在重庆悦来国际会议中心举行。本公众号将全方位地对会议的热点进行报道,方便广大读者跟踪和了解人工智能的前沿理论和技术。欢迎广大读者对文章进行关注、阅读和转发。文章是对报告人演讲内容的理解或转述,可能与报告人的原意有所不同,敬请读者理解;如报告人认为文章与自己报告的内容差别较大,可以联系公众号删除。

5月6日的VALSE 2024会议主要内容包括2个Tutorial和10Workshop。

2Tutorial:在这两个Tutorial中,来自中山大学的李冠彬教授、浙江大学的彭思达研究员和香港中文大学的韩晓光教授呈现了3个报告,分别为《开放词汇视觉感知》、《NeRF的基础及后续扩展》和《3GDS, 三维重建的终点吗?》。

10Workshop: 这些Workshop涵盖了从视觉大模型的高效迁移、因果推断与机器学习的深入研究,到三维重建与内容生成技术的实际应用,以及大模型在智慧医疗中的创新应用。还讨论了智能算法的安全性与伦理问题、生成式模型在艺术智能中的应用,具身智能的新研究进展,以及视频生成技术和移动终端上的AI图像增强技术的最新发展。此外,还讨论了海洋多模态计算的挑战与机遇。这些讨论不仅展示了技术的多样化应用,还强调了科研在推动技术前沿和解决实际问题中的核心作用。

本文主要对来自中山大学的李冠彬教授所做的Tutorial《开放词汇视觉感知》进行介绍。

1.报告人简介

李冠彬,中山大学计算机学院副教授,博士生导师,国家优秀青年基金获得者,主要研究领域为跨模态视觉感知、理解与生成。

2.开放词汇视觉感知的基本概念

开放词汇视觉感知是计算机视觉领域中的一个重要概念。它指的是一种允许计算机视觉系统在面对新的物体或场景时,能够自我更新并学习到新的标签的方法。这种方法通过构建一个可扩展的标签集合(即开放词汇),使系统能够更好地适应现实世界的多样性。在视觉感知的过程中,计算机视觉系统首先通过视觉感知器官(如摄像头)获取图像信息,然后对这些信息进行处理和分析,以实现对图像中物体的准确定位和识别。开放词汇视觉感知的引入,使得计算机视觉系统能够处理更广泛、更复杂的场景,提高了系统的适应性和准确性。

3.内容整理

李冠彬教授从开放词汇的分类、检测、分割、下游任务应用和多模态大模型这几部分展开讲述。

1)开放词汇的分类

开放词汇的分类方式使得机器学习模型或计算机视觉系统能够更好地适应现实世界的多样性,提高模型的泛化能力和适应性。在实际应用中,开放词汇的分类可以应用于多个领域,例如:

1)自然语言处理(NLP):在NLP任务中,开放词汇可以帮助模型处理和理解新的词汇、短语和表达方式。例如,在情感分析任务中,模型可以学习新的情感词汇,以便更准确地识别文本中的情感倾向。

2)计算机视觉:在计算机视觉任务中,开放词汇可以用于描述图像中的物体、场景和事件。通过不断学习和更新标签集合,模型可以更好地识别和理解图像中的新内容。

3)语音识别:在语音识别任务中,开放词汇可以帮助模型识别新的语音词汇和表达方式。这对于处理口音、方言和非标准发音等复杂情况非常重要。

2)开放词汇的检测

开放词汇的检测是一种先进的技术,特别是在计算机视觉领域。它的主要目标是使机器能够识别并定位图像中那些未在训练集中出现过的新类别的物体。这种技术对于机器人技术、自动驾驶等领域具有重要的应用价值。传统的目标检测方法通常依赖于一个固定的、预定义的标签集合,这限制了它们识别未在训练集中出现过的新类别物体的能力。而开放词汇检测技术的出现,克服了这一限制。它利用深度学习和自然语言处理等技术,通过在大规模数据集上预训练模型,并结合视觉和语言信息,使得模型能够识别并定位出图像中的新类别物体。具体来说,开放词汇检测技术可能会采用一些创新的方法,如YOLO-World等。YOLO-World的架构见图1,更多的介绍读者可以下载论文进行阅读,论文下载地址https://arxiv.org/abs/2401.17270。

1 YOLO-World的架构

3)开放词汇的分割

开放词汇的分割主要指的是一种处理文本或图像数据的方法,旨在将连续的文本序列或图像中的物体切分成独立的词汇单元或类别。与传统的封闭词汇分割方法不同,开放词汇分割方法能够处理未在训练数据中出现过的类别,因此具有更强的适应性和灵活性。开放词汇分割方法的优点在于它能够处理大量的类别,而不需要对每个类别进行单独的训练。此外,这种方法还可以利用预训练的模型来提高分割的准确性和效率。例如,CLIP(Contrastive Language-Image Pre-Training)模型就是一个常用的预训练模型,它通过在大量图像和文本数据上进行训练,学习到了丰富的视觉和语义信息,可以用于支持开放词汇分割任务,如图2所示。CLIP论文链接:https://arxiv.org/abs/2103.00020。

图 2 CLIP方法的基本原理

4)下游任务中的应用

开放词汇视觉感知在下游任务中的应用中展现出了强大的潜力和实用性。它使得计算机视觉系统能够识别和理解现实世界中更多样化、更复杂的场景和物体,为自动驾驶、智能安防、机器人导航等领域提供了更精准、更灵活的视觉处理能力。通过不断学习和适应新的视觉词汇,这些系统能够更好地满足实际应用的需求,推动人工智能技术的进一步发展。

5)多模态大模型

多模态大模型是一种强大的深度学习架构,它能够整合和处理来自不同模态的信息,如文本、图像、音频和视频等。结合开放视觉感知,多模态大模型不仅能够分析已知的图像类别,还能学习并识别那些未在训练集中出现过的新视觉词汇。这种跨模态的学习能力使得多模态大模型在智能安防、自动驾驶、机器人导航等领域具有广泛的应用前景,能够提供更全面、更准确的视觉感知和决策支持。

这篇关于VALSE 2024 Tutorial内容总结--开放词汇视觉感知的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/969300

相关文章

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解