代码随想录算法训练营Day32 | 122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day32 | 122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 122.买卖股票的最佳时机II
    • 做题
    • 看文章
  • 55. 跳跃游戏
    • 做题
    • 看文章
  • 45.跳跃游戏II
    • 做题
    • 看文章
      • 方法1
      • 方法2
  • 以往忽略的知识点小结
  • 个人体会

122.买卖股票的最佳时机II

代码随想录:122.买卖股票的最佳时机II
Leetcode:122.买卖股票的最佳时机II

做题

考虑计算当天买入,第二天卖出的利润,但不知道局部最优能否获得全局最优。

看文章

每天利润最大化,就是全局利润最大化。自己实现,代码如下:

class Solution:def maxProfit(self, prices: List[int]) -> int:res = 0for i in range(1, len(prices)):cur = prices[i] - prices[i-1]if cur > 0:res += curreturn res

时间复杂度:O(n)
空间复杂度:O(1)

这道题本来是动态规划的题,但贪心算法更为巧妙。

55. 跳跃游戏

代码随想录:55. 跳跃游戏
Leetcode:55. 跳跃游戏

做题

考虑在当前可跳跃步数中,找到下一个可跳跃最大的步数,但实现起来比较麻烦,不知道能不能AC。

看文章

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围)。
整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
实际上是遍历数组,找可覆盖的范围。当 i <= cover 时,可以扩大范围。具体代码如下:

class Solution:def canJump(self, nums: List[int]) -> bool:cover = 0if len(nums) == 1: return Truei = 0# python不支持动态修改for循环中变量,使用while循环代替while i <= cover:cover = max(i + nums[i], cover)if cover >= len(nums) - 1: return Truei += 1return False

45.跳跃游戏II

代码随想录:45.跳跃游戏II
Leetcode:45.跳跃游戏II

做题

与上题的自己思路一致,但还是比较难实现。

看文章

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。

特殊情况是,当移动下标达到了当前覆盖的最远距离下标时:

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

方法1

移动下标达到了当前覆盖的最远距离下标时,步数就要加1,来增加覆盖距离。最后的步数就是最少步数。具体代码如下:

class Solution:def jump(self, nums):if len(nums) == 1:return 0cur_distance = 0  # 当前覆盖最远距离下标ans = 0  # 记录走的最大步数next_distance = 0  # 下一步覆盖最远距离下标for i in range(len(nums)):next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖最远距离下标if i == cur_distance:  # 遇到当前覆盖最远距离下标ans += 1  # 需要走下一步cur_distance = next_distance  # 更新当前覆盖最远距离下标(相当于加油了)if next_distance >= len(nums) - 1:  # 当前覆盖最远距离达到数组末尾,不用再做ans++操作,直接结束breakreturn ans

时间复杂度: O(n)
空间复杂度: O(1)

方法2

针对于方法1的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。
想要达到这样的效果,只要让移动下标,最大只能移动到 nums.size - 2 的地方就可以了。

class Solution:def jump(self, nums):cur_distance = 0  # 当前覆盖的最远距离下标ans = 0  # 记录走的最大步数next_distance = 0  # 下一步覆盖的最远距离下标for i in range(len(nums) - 1):  # 注意这里是小于len(nums) - 1,这是关键所在next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖的最远距离下标if i == cur_distance:  # 遇到当前覆盖的最远距离下标cur_distance = next_distance  # 更新当前覆盖的最远距离下标ans += 1return ans

以往忽略的知识点小结

  • python不支持动态修改for循环中变量
  • 将全局最优拆分成局部最优,只要没有反例,就可以用贪心算法AC
  • 对于跳跃问题,可以记录当前可覆盖的最远距离,并遍历计算下次可覆盖的最远距离

个人体会

完成时间:2h。
心得:贪心算法没有统一思路,主要是将全局最优拆解成局部最优。

这篇关于代码随想录算法训练营Day32 | 122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968929

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar