(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程

2024-05-07 22:48

本文主要是介绍(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欧拉公式意义:
欧拉公式是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名.1.将指数函数ex展开成幂级数形式。
首先,假设有恒等式:
e^x= a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n(n趋向无穷大)两侧取导数:
e^x = 0 + a1 + 2a2x + 3a3x^2 + 4a4x^3 + …+ nanx^(n-1)因而有恒等式
a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n = a1 + 2a2x + 3a3x^2 + 4a4x^3 + …+ nanx^(n-1)两一元多项式恒等,次数相同的项,系数应相同,则有a0 = a1
a1 = 2a2
a2 = 3a3
a3 = 4a4
……an-1 = nan由此得
a1 = a0
a2= a1/2 = a0/2! //2! = 2 * 1
a3= a2/3 = a1/(2*3) = a0/3! //3! = 3 * 2 * 1
a4= a3/4 = a2/(3*4) = a1/(2*3*4) = a0/4! //4! = 4 * 3 * 2 * 1
……an = a0/n!代回最初的假设式ex = a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n,有e^x = 1*a0 + a0x/1! + a0x^2/2! + a0x^3/3! + a0x^4/4! + …+ a0x^n/n!
e^x = a0( 1+x/1! + x^2/2! + x^3/3! +x^4/4! + …+ x^n/n!)此是恒等式。因当x=0时,式子也成立。将x=0代入,有e0 = a0*(1 + 0/1! +0^2/2! + 0^3/3! +0^4/4! + …+ 0^n/n!)
1 = a0*(1 + 0)
a0 = 1(恒成立)将a0 = 1代入 ex =a0*(1 + x/1! + x^2/2! + x^3/3! + x^4/4! + …+ x^n/n!),得到e^x = 1 + x + x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)由此推导e^(ix) = cos(x) + i* sin(x)过程
<1>.欧拉公式里其他两个函数的泰勒级数为:
cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! +...
sin(x) = x - x^3/3! + x^5/5! - x^7/7! +...<2>.现在,让我们将泰勒级数中的变量x换成ix,得到
e^x = 1 + x + x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)
e^(ix) = 1 + ix + (ix)^2/2! + (ix)^3/3! + ...+ (ix)^n/n!<3>.其中某些i的次方可以简化,例如,由定义i^2=−1,所以i^3=-i及i^4=1,等等。因此,上式可简化为
e^(ix) = 1 + ix -x^2/2! - i*x^3/3! + x^4/4! + i*x^5/5! - x^6/6! - i*x^7/7! + x^8/8! + ...<4>.我们可以将涉及i的项合并在一起,给出
e^(ix) = (1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! +...) + i*(x - x^3/3! + x^5/5! -  x^7/7! + ...)<5>.注意到这两个级数与上面的sin(x)和cos(x)的对应级数一样,所以我们将它们代入而得到e^(ix) = cos(x) + i*sin(x) //这就是欧拉公式<6>.我们现在要做的是让x = π。由于sin(π) = 0及cos(π) = −1,我们得到
e^(iπ) = cos(π) + i*sin(π)= cos(180) + i*sin(180)= -1 + i*0= -1将各项写成统一形式:
ex= x^0/0! + x^1/1! +x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)所以
e^x = ∑n=0∞ xn/n!(即 1 + x + x^2/2! + x^3/3! + x^4/4! +…)特别地,当x=1时,有
e=∑n=0∞ 1/n!(即 2 + 1/2! + 1/3! + 1/4! +…)

 

这篇关于(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968614

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存