Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

2024-05-07 18:44

本文主要是介绍Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯资产价格动态数学随机模型:🖊价格几何布朗运动过程积分 | 🖊布朗运动和几何布朗运动随时间概率密度 | 🖊几何布朗运动离散过程 | 🖊电动车历史股票价值及预期。
  2. 🎯金融衍生品估值偏微分方程:🖊期权合约 | 🖊计算看涨期权期权面,显示对冲参数及预期价格 | 🖊计算看跌期权的期权面 | 🖊对冲看涨期权投资组合 | 🖊再平衡频率对投资组合方差的影响。
  3. 🎯期权价格与隐含概率密度函数关系模型:🖊看涨期权隐含波动率 | 🖊看涨期权敏感度值曲面 | 🖊隐含波动率曲面 | 🖊看涨期权价值函数偏微分变化趋势 | 🖊看涨期权价格执行价格对比 | 🖊哈根隐含波动率参数化下的不同隐含波动率形状 | 🖊外汇市场报价数据插值 | 🖊局部波动模型模拟。
  4. 🎯价格泊松过程中偏积分微分方程:🖊价格跳跃扩散的蒙特卡罗路径和补偿泊松过程 | 🖊默顿模型,跳跃扩散过程 | 🖊跳跃扩散过程概率密度三维分布和二维动态 | 🖊默顿跳跃扩散模型对隐含波动率影响 | 🖊对冲看涨期权价格波动 | 🖊不同对冲频率对损益方差的影响。
  5. 🎯傅立叶余弦级数和风险中性估值期权定价方法 | 🎯多维期权定价和风险中性措施
  6. 🎯C++和Python计算金融数学方程算法模型

🍇Python风险中性资产定价

β = 1 / ( 1 + ρ ) \beta=1 /(1+\rho) β=1/(1+ρ) 为跨期贴现因子,其中 ρ \rho ρ 是主体对未来贴现的利率。为一单位除息资产定价的基本风险中性资产定价方程为
p t = β E t [ d t + 1 + p t + 1 ] p_t=\beta E _t\left[d_{t+1}+p_{t+1}\right] pt=βEt[dt+1+pt+1]
这里 E t [ y ] E _t[y] Et[y] 表示 y y y 的最佳预测,以时间 t t t 可用的信息为条件。

最简单的情况是恒定、非随机股息流的风险中性价格 d t = d > 0 d_t=d>0 dt=d>0。从上式中删除期望并向前迭代得出,
p t = β ( d + p t + 1 ) = β ( d + β ( d + p t + 2 ) ) ⋮ = β ( d + β d + β 2 d + ⋯ + β k − 2 d + β k − 1 p t + k ) \begin{aligned} p_t & =\beta\left(d+p_{t+1}\right) \\ & =\beta\left(d+\beta\left(d+p_{t+2}\right)\right) \\ & \vdots \\ & =\beta\left(d+\beta d+\beta^2 d+\cdots+\beta^{k-2} d+\beta^{k-1} p_{t+k}\right) \end{aligned} pt=β(d+pt+1)=β(d+β(d+pt+2))=β(d+βd+β2d++βk2d+βk1pt+k)
如果 lim ⁡ k → + ∞ β k − 1 p t + k = 0 \lim _{k \rightarrow+\infty} \beta^{k-1} p_{t+k}=0 limk+βk1pt+k=0,该序列收敛为
p ˉ : = β d 1 − β \bar{p}:=\frac{\beta d}{1-\beta} pˉ:=1ββd
这是股息不变情况下的均衡价格。

考虑一个增长的非随机股息过程 d t + 1 = g d t d_{t+1}=g d_t dt+1=gdt,其中 0 < g β < 1 0<g \beta<1 0<gβ<1。虽然当股息随着时间的推移而增长时,价格通常不会保持不变,但价格股息率却可以。

如果我们猜到这一点,将 v t = v v_t=v vt=v 代入下式以及我们的其他假设,我们得到 v = β g ( 1 + v ) v=\beta g(1+v) v=βg(1+v)​。
v t = E t [ m t + 1 d t + 1 d t ( 1 + v t + 1 ) ] v_t= E _t\left[m_{t+1} \frac{d_{t+1}}{d_t}\left(1+v_{t+1}\right)\right] vt=Et[mt+1dtdt+1(1+vt+1)]
由于 β g < 1 \beta g<1 βg<1,我们有唯一的正解:
v = β g 1 − β g v=\frac{\beta g}{1-\beta g} v=1βgβg
价格为:
p t = β g 1 − β g d t p_t=\frac{\beta g}{1-\beta g} d_t pt=1βgβgdt
在这个例子中,如果我们采用 g = 1 + κ g=1+\kappa g=1+κ 并让 ρ : = 1 / β − 1 \rho:=1 / \beta-1 ρ:=1/β1,那么价格就变成
p t = 1 + κ ρ − κ d t p_t=\frac{1+\kappa}{\rho-\kappa} d_t pt=ρκ1+κdt
这就是所谓的戈登公式。

代码实现一个著名的定价模型:

class PricingModel:def __init__(self, β=0.96, mc=None, γ=2.0, g=np.exp):self.β, self.γ = β, γself.g = g# A default process for the Markov chainif mc is None:self.ρ = 0.9self.σ = 0.02self.mc = qe.tauchen(n, self.ρ, self.σ)else:self.mc = mcself.n = self.mc.P.shape[0]def test_stability(self, Q):sr = np.max(np.abs(eigvals(Q)))if not sr < 1 / self.β:msg = f"Spectral radius condition failed with radius = {sr}"raise ValueError(msg)def tree_price(ap):# Simplify names, set up matricesβ, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_valuesJ = P * ap.g(y)**(1 - γ)# Make sure that a unique solution existsap.test_stability(J)# Compute vI = np.identity(ap.n)Ones = np.ones(ap.n)v = solve(I - β * J, β * J @ Ones)return v

这是 v v v 作为 γ \gamma γ 几个值的状态函数的图,具有正相关的马尔可夫过程和 g ( x ) = exp ⁡ ( x ) g(x)=\exp (x) g(x)=exp(x)

γs = [1.2, 1.4, 1.6, 1.8, 2.0]
ap = AssetPriceModel()
states = ap.mc.state_valuesfig, ax = plt.subplots()for γ in γs:ap.γ = γv = tree_price(ap)ax.plot(states, v, lw=2, alpha=0.6, label=rf"$\gamma = {γ}$")ax.set_title('Price-dividend ratio as a function of the state')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968083

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财