keil调试过程查看全局变量和局部变量的方法及编译器优化

本文主要是介绍keil调试过程查看全局变量和局部变量的方法及编译器优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

keil调试过程查看全局变量和局部变量的方法及编译器优化

一、查看全局变量的方法:Watch Window

The Watch window allows to evaluate symbols, registers, and expressions. The window displays the item name, value, and type.
这里写图片描述Open this window through the toolbar button or using the menu View – Watch Windows.
这里写图片描述

Where

search boxAllows finding expressions within the current name list. The search string can consist of alphanumeric characters and mask characters as described in the appendix F. TR1 Search Expressions.
NameLists the expression name. Symbol names comply to the rules described in Program Variables (Symbols). Items are marked with an icon: Structure icon - identifies items of a complex type, such as structures or arrays. Simple icon - identifies items of a simple type, such as integers or characters.
ValueShows the memory address or the evaluated value of an expression. This field can contain explanatory text. Expressions of the type unsigned char show the value and the corresponding character. A single-quote () indicates that the value was restored from a previous debugging session. Values are updated: Whenever program execution stops. During program execution when View - Periodic Window Update is enabled. When clicking the Toolbox button Update Windows.
TypeShows the type of the expression. For functions the field shows the return and parameter types.

Using the Watch Window

Drag&drop expressions to other windows, for example to a Memory, Command, or Logic Analyzer window.

Add an Expression

  • Double-click the text and start editing. Refer to the section Expressions for details.
  • Drag&drop expressions from other windows into the Watch window.
  • Open the context menu of a file. Use Add item to - Watch #. The variable beneath the mouse position is added to the Watch window.
  • Use the command WatchSet in the window Command.

Remove an Expression

  • Click on the item name and press the Delete key.
  • Use the command WatchKill in the window Command.

Change the Value of an Expression

  • Click on the value-field and start editing. Not all expressions accept changes.

The context menu allows:

  • Removing an expression.
  • Changing the value representation.
  • Setting breakpoints.
  • Adding expressions to other windows.
  • Showing or hiding the toolbar that contains the search box.
二、查看局部变量的方法:Call Stack and Locals Window

The Call Stack + Locals window shows objects that are currently on stack. Tasks are shown for applications that use the RTX-RTOS. Each object is associated to its location or value, and type.

b_uv4_callstack_window[1]Open this window from the toolbar or using the menu View - Call Stack Window.

uv4_db_dbg_callstack[1]

Where

NameDisplays the symbol names. The currently active function or task is highlighted in green. Double-click the item node to expand or collapse the item.
Location/ValueDisplays the memory address or value of the item, or has an explanatory text. For items of the type unsigned char the field shows the value and the character.
TypeShows the object type. Functions are associated with their return type and parameter types.

The window content is updated automatically:

  • Whenever program execution stops.
  • During program execution when View - Periodic Window Update is enabled.

The context menu allows:

  • Jumping to the caller code.
  • Jumping to the callee code.
  • Switching between the hexadecimal and decimal representation of values.
三、编译器优化:Compiler optimization levels and the debug view

The precise optimizations performed by the compiler depend both on the level of optimization chosen, and whether you are optimizing for performance or code size.

The compiler supports the following optimization levels:

  • 0

    Minimum optimization. Turns off most optimizations. When debugging is enabled, this option gives the best possible debug view because the structure of the generated code directly corresponds to the source code. All optimization that interferes with the debug view is disabled. In particular: Breakpoints may be set on any reachable point, including dead code. The value of a variable is available everywhere within its scope, except where it is uninitialized. Backtrace gives the stack of open function activations which are expected from reading the source. Note Although the debug view produced by -O0 corresponds most closely to the source code, users may prefer the debug view produced by -O1 as this will improve the quality of the code without changing the fundamental structure. NoteDead code includes reachable code that has no effect on the result of the program, for example an assignment to a local variable that is never used. Unreachable code is specifically code that cannot be reached via any control flow path, for example code that immediately follows a return statement.

  • 1

    Restricted optimization. The compiler only performs optimizations that can be described by debug information. Removes unused inline functions and unused static functions. Turns off optimizations that seriously degrade the debug view. If used with --debug, this option gives a generally satisfactory debug view with good code density. The differences in the debug view from –O0 are: Breakpoints may not be set on dead code. Values of variables may not be available within their scope after they have been initialized. For example if their assigned location has been reused. Functions with no side-effects may be called out of sequence, or may be omitted if the result is not needed. Backtrace may not give the stack of open function activations which are expected from reading the source due to the presence of tailcalls. The optimization level –O1 produces good correspondence between source code and object code, especially when the source code contains no dead code. The generated code will be significantly smaller than the code at –O0, which may simplify analysis of the object code.

  • 2

    High optimization. If used with --debug, the debug view might be less satisfactory because the mapping of object code to source code is not always clear. The compiler may perform optimizations that cannot be described by debug information. This is the default optimization level. The differences in the debug view from –O1 are: The source code to object code mapping may be many to one, due to the possibility of multiple source code locations mapping to one point of the file, and more aggressive instruction scheduling. Instruction scheduling is allowed to cross sequence points. This can lead to mismatches between the reported value of a variable at a particular point, and the value you might expect from reading the source code. The compiler automatically inlines functions.

  • 3

    Maximum optimization. When debugging is enabled, this option typically gives a poor debug view. ARM recommends debugging at lower optimization levels. If you use -O3 and -Otime together, the compiler performs extra optimizations that are more aggressive, such as: High-level scalar optimizations, including loop unrolling. This can give significant performance benefits at a small code size cost, but at the risk of a longer build time. More aggressive inlining and automatic inlining. These optimizations effectively rewrite the input source code, resulting in object code with the lowest correspondence to source code and the worst debug view. The --loop_optimization_level=option controls the amount of loop optimization performed at –O3 –Otime. The higher the amount of loop optimization the worse the correspondence between source and object code. For extra information about the high level transformations performed on the source code at –O3 –Otime use the --remarks command-line option.

Because optimization affects the mapping of object code to source code, the choice of optimization level with -Ospace and -Otime generally impacts the debug view.

The option -O0 is the best option to use if a simple debug view is required. Selecting -O0 typically increases the size of the ELF image by 7 to 15%. To reduce the size of your debug tables, use the --remove_unneeded_entities option.

这篇关于keil调试过程查看全局变量和局部变量的方法及编译器优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968052

相关文章

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S