#####tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构 ***********######

本文主要是介绍#####tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构 ***********######,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件:

  1. 张量(Tensor)
  2. 基于张量的各种操作
  3. 计算图(Computation Graph)
  4. 自动微分(Automatic Differentiation)工具
  5. BLAS、cuBLAS、cuDNN等拓展包

.
.

一、张量的理解

本节主要参考自文章《开发丨深度学习框架太抽象?其实不外乎这五大核心组件》

.

1、张量的解读

张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进行的。几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。

举例来说,我们可以将任意一张RGB彩色图片表示成一个三阶张量(三个维度分别是图片的高度、宽度和色彩数据)。如下图所示是一张普通的水果图片,按照RGB三原色表示,其可以拆分为三张红色、绿色和蓝色的灰度图片,如果将这种表示方法用张量的形式写出来,就是图中最下方的那张表格。

这里写图片描述

这里写图片描述

图中只显示了前5行、320列的数据,每个方格代表一个像素点,其中的数据[1.0, 1.0, 1.0]即为颜色。假设用[1.0, 0, 0]表示红色,[0, 1.0, 0]表示绿色,[0, 0, 1.0]表示蓝色,那么如图所示,前面5行的数据则全是白色。

将这一定义进行扩展,我们也可以用四阶张量表示一个包含多张图片的数据集,其中的四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。

为什么需要使用张量来进行图片处理??

当数据处理完成后,我们还可以方便地将张量再转换回想要的格式。例如Python NumPy包中numpy.imread和numpy.imsave两个方法,分别用来将图片转换成张量对象(即代码中的Tensor对象),和将张量再转换成图片保存起来。

.

2、张量的各种操作

有了张量对象之后,下面一步就是一系列针对这一对象的数学运算和处理过程。

这里写图片描述

其实,所谓的“学习”就是不断纠正神经网络的实际输出结果和预期结果之间误差的过程。这里的一系列操作包含的范围很宽,可以是简单的矩阵乘法,也可以是卷积、池化和LSTM等稍复杂的运算。
.

3、计算图(Computation Graph)

有了张量和基于张量的各种操作之后,下一步就是将各种操作整合起来,输出我们需要的结果。

但不幸的是,随着操作种类和数量的增多,有可能引发各种意想不到的问题,包括多个操作之间应该并行还是顺次执行,如何协同各种不同的底层设备,以及如何避免各种类型的冗余操作等等。这些问题有可能拉低整个深度学习网络的运行效率或者引入不必要的Bug,而计算图正是为解决这一问题产生的。

据AI科技评论了解,计算图首次被引入人工智能领域是在2009年的论文《Learning Deep Architectures for AI》。当时的图片如下所示,作者用不同的占位符(*,+,sin)构成操作结点,以字母x、a、b构成变量结点,再以有向线段将这些结点连接起来,组成一个表征运算逻辑关系的清晰明了的“图”型数据结构,这就是最初的计算图。

这里写图片描述

后来随着技术的不断演进,加上脚本语言和低级语言各自不同的特点(概括地说,脚本语言建模方便但执行缓慢,低级语言则正好相反),因此业界逐渐形成了这样的一种开发框架:前端用Python等脚本语言建模,后端用C++等低级语言执行(这里低级是就应用层而言),以此综合了两者的优点。可以看到,这种开发框架大大降低了传统框架做跨设备计算时的代码耦合度,也避免了每次后端变动都需要修改前端的维护开销。而这里,在前端和后端之间起到关键耦合作用的就是计算图。

需要注意的是,通常情况下开发者不会将用于中间表示得到的计算图直接用于模型构造,因为这样的计算图通常包含了大量的冗余求解目标,也没有提取共享变量,因而通常都会经过依赖性剪枝、符号融合、内存共享等方法对计算图进行优化。

目前,各个框架对于计算图的实现机制和侧重点各不相同。例如Theano和MXNet都是以隐式处理的方式在编译中由表达式向计算图过渡。而Caffe则比较直接,可以创建一个Graph对象,然后以类似Graph.Operator(xxx)的方式显示调用。

因为计算图的引入,开发者得以从宏观上俯瞰整个神经网络的内部结构,就好像编译器可以从整个代码的角度决定如何分配寄存器那样,计算图也可以从宏观上决定代码运行时的GPU内存分配,以及分布式环境中不同底层设备间的相互协作方式。

.

4、自动微分(Automatic Differentiation)工具

计算图带来的另一个好处是让模型训练阶段的梯度计算变得模块化且更为便捷,也就是自动微分法。

将待处理数据转换为张量,针对张量施加各种需要的操作,通过自动微分对模型展开训练,然后得到输出结果开始测试。那么如何微分中提高效率呢?

第一种方法:模拟传统的编译器
每一种张量操作的实现代码都会预先加入C语言的转换部分,然后由编译器在编译阶段将这些由C语言实现的张量操作综合在一起。目前pyCUDA和Cython等编译器都已经实现了这一功能。

第二种方法:利用脚本语言实现前端建模
用低级语言如C++实现后端运行,这意味着高级语言和低级语言之间的交互都发生在框架内部,因此每次的后端变动都不需要修改前端,也不需要完整编译(只需要通过修改编译参数进行部分编译),因此整体速度也就更快。

第三种方法:现成的扩展包
例如最初用Fortran实现的BLAS(基础线性代数子程序),就是一个非常优秀的基本矩阵(张量)运算库,此外还有英特尔的MKL(Math Kernel Library)等,开发者可以根据个人喜好灵活选择。
一般的BLAS库只是针对普通的CPU场景进行了优化,但目前大部分的深度学习模型都已经开始采用并行GPU的运算模式,因此利用诸如NVIDIA推出的针对GPU优化的cuBLAS和cuDNN等更据针对性的库可能是更好的选择。

.
.

二、tensorflow运行结构

本节内容为小象学院深度学习二期,课程笔记,由寒小阳老师授课,感谢寒小阳老师,讲得深入浅出,适合我这样的菜鸟~

这里写图片描述

.

1、tensorflow框架整体结构

用张量tensor表示数据;计算图graph表示任务;在会话session中执行context;
通过变量维护状态;通过feed和fetch可以任意的操作(arbitrary operation)、赋值、获取数据

.

2、Numpy和tensorflow中的张量对比

这里写图片描述

注意:如果tensorflow要输出张量不跟numpy中的array一样,要借助eval()

print(tensor.eval())

.

3、tensorflow中的计算图

这里写图片描述

#创建节点
import tensorflow as tf
matrix1=tr.constant([[3.,3.]])    #常量节点,1*2
matrix2=tr.constant([[2.],[2.]])  #常量节点,2*1
product=tf.matmul(matrix1,matrix2) #矩阵乘法节点,两常量相乘#执行
sess=tf.Session()         #创建session
result=sess.run(product)  #run进行执行
print result              #返回一个numpy中的ndarray对象
sess.close()              #关闭对话,不然占用资源

.

4、用变量来保存参数w

W2=tf.Variable(tf.zeros((2,2)).name="weights")
sess.run(tf.initialize_all_variables())
print(sess.run(W2))

注意需要tf.initialize_all_variables对变量进行初始化才能赋值的。

.

5、如何指定、调用GPU/CPU

用with…device语句来指派。

这里写图片描述

.

6、计算模型computation graph 与层layer模型

计算模型
首先构造好整个计算链路,然后进行计算。同时可以对链路进行优化+分布式。
这里写图片描述
总得来看,链路结构较为复杂,但是比较好计算高效率运算。

layer模型
每个层固定实现前向与后向,同时必须手动指定目标GPU

这篇关于#####tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构 ***********######的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967843

相关文章

【百度AI人脸核身+公安验证】Android示例工程运行

· 注意1:前提自己已经安装了Android Studio开发工具 · 注意2:此SDK必须企业认证才可以下载。且有相关验证。因此请先确认是否企业认证 · 注意3:此SDK需要2个Licenses 一个是OCR模块绑定包名的。另一个是人脸模块客户端SDK的里Licenses · 注意4:在人脸模块客户端创建应用之前。记得已经获取到了安卓keystore 中MD5值 · 注意5:在人脸模块创建

【百度AI人脸核身+公安验证】IOS示例工程运行

注意:前提百度账号满足企业认证     注意:公安验证接口非免费。需要单独提交工单申请哦     注意:人脸识别应用勾选文字识别的身份证识别     注意:人脸模块客户端创建了应用。并设置了授权标识、包名相关信息 以上注意都满足。请看重要!!!SDK的license 下载IOS保存本地 下载自动配置授权信息的示例工程 并解压 双击运行FacePrint.

maven学习系列——(二)maven的安装和一些基本的配置

这一篇主要会总结maven在window上的安装,以及Eclipse安装maven插件。 会整理和贴出具体的安装步骤等! 配置大概会整理一下,方便自己查看和使用! Maven 的使用在Windows上使用比较多,一般的开发都是在Windows上;Linux上的使用相对比较少,不过会总结Windows和Linux系统两种安装方式。 首先会介绍在Windows和Eclipse安装Maven,L

Mysql—运行sql的小技巧

本篇集中整理一下执行sql的小技巧,这种方式不仅带来了操作上的便捷,也可以保证数据可以数据的安全性。 1:查询数据(保证查询性能) 首先想先解释一下 SELECT * 和 SELECT t.id , t.name 的性能,结论:后者性能其实总体优于前者,不信可以自己去试验。 在查询的时候最好给表起个 别名,方便找到表中要查询的字段。执行sql的进行多条件查询的时候,使用类如Navicat

Sping 源码深度解析——容器的功能扩展 【学习笔记】

我为什么 看的不够远,因为高度不够! 学习和整理总结Spring容器的功能扩展,本文为学习笔记,其中有一些内容是自己的思考总结! 一、两种Spring中bean加载的方式 第一种 # 第一种使用 BeanFactory 以及它默认的实现类 XmlBeanFactoryBeanFactory bf = new XmlBeanFactory(new ClassPathResource(

学习笔记:从技术到管理,在蜕变中成长

大家好,我是阿飞云 怕什么真理无穷,进一步有近一步的欢喜 前几天分享了一篇有关于:从程序员到管理团队,分享一些职场管理的心得,相关内容也可点击下面卡片跳转查看。 本文分享一个看到过的视频内容,视频分享人是 特赞科技 CTO 黄勇,做了关于《从技术到管理,在蜕变中成长》的主题分享,对做技术与做管理的不同,到如何把事情做好有哪些模式,以及团队作战能力方面做了深入的分析。 看完后觉得挺有收获的,学习

DoNet:浅淡对delegate的理解

1 前言 C#的相关文档,MSDN上其实已经很详细了,关于delegate的使用可以参 考MSDN上的文档https://msdn.microsoft.com/zh-cn/library/900fyy8e.aspx 2 官方示例 委托类型的声明与方法签名相似, 有一个返回值和任意数目任意类型的参数: public delegate void TestDelegate(string mes

repo使用总结—从入门到入门

文章目录 1 what's repo2 官方文档Repo 命令参考资料help 帮助init 初始化sync 同步所有项目文件upload 提交更改diffdownloadforallprunestart 创建本地分支Example:创建三个分支test-1,test-2,test-3 statusbranchesabandonExample:删除本地分支test-3 后续在使用中遇到问题

STM32 TIM 多通道互补PWM波形输出配置快速入门

platform:stm32f10xxx lib:STM32F10x_StdPeriph_Lib_V3.5.0 前言 在做三相逆变的时候,需要软件生成SVPWM波形,具体的算法需要产生三对互补的PWM,这样可以驱动六个开关元件,stm32f103中的TIM1高级定时器支持产生三路互补PWM波形,下面进一步学习。 PWM产生的原理 TIM1的OC模块,可以产生PWM波形,具体步骤; 寄存器

STM32 TIM1高级定时器配置快速入门

layout: post tags: [STM32] comments: true 文章目录 layout: post tags: [STM32] comments: true重点内容时基单元计数模式 重点内容 不管是基于标准库还是直接操作寄存器,因为TIM定时器的功能比较多,这里单纯只从定时器的角度进行学习,这里需要重点关注的地方应该有以下几点: 定时器时钟频率的计算