数据预处理——One-hot编码

2024-05-07 16:08
文章标签 数据 编码 预处理 one hot

本文主要是介绍数据预处理——One-hot编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上关于One-hot编码的例子都来自于同一个例子,而且结果来的太抖了。查了半天,终于给搞清楚这个独热编码是怎么回事了,其实挺简单的,这里再做个总结。
首先,引出例子:

已知三个feature,三个feature分别取值如下:
feature1=[“male”, “female”]
feature2=[“from Europe”, “from US”, “from Asia”]
feature3=[“uses Firefox”, “uses Chrome”, “uses Safari”, “uses Internet Explorer”]

如果做普通数据处理,那么我们就按0,1,2,3进行编号就行了。例如feature1=[0,1],feature2=[0,1,2],feature3=[0,1,2,3]。
那么,如果某个样本为[“male”,“from Asia”, “uses Chrome”],它就可以表示为[0,2,1]。
以上为普通编码方式。
独热编码(One-hot)换了一种方式编码,先看看百科定义的:

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。
例如对六个状态进行编码:
自然顺序码为 000,001,010,011,100,101
独热编码则是 000001,000010,000100,001000,010000,100000

通过以上可以看到,独热编码每一个码的总的位数取决于状态的种类数,每一个码里的“1”的位置,就代表了哪个状态生效。
还是回到我们最开始的例子,那么我们将它换成独热编码后,应该是:
feature1=[01,10]
feature2=[001,010,100]
feature3=[0001,0010,0100,1000]
所以,对于前边样本[“male”,“from Asia”, “uses Chrome”],经过独热编码后,它应该为:
[01,00, 000,000,100, 0000,0010,0000,0000]
注:上边用空格,以便看的更清晰。

以上的独热编码可以写成简写形式: [1,0, 0,0,1, 0,1,0,0]

最后,摘抄下独热编码的好处:

由于分类器往往默认数据数据是连续的,并且是有序的,但是在很多机器学习任务中,存在很多离散(分类)特征,因而将特征值转化成数字时,往往也是不连续的, One-Hot 编码解决了这个问题。
并且,经过独热编码后,特征变成了稀疏的了。这有两个好处,一是解决了分类器不好处理属性数据的问题,二是在一定程度上也起到了扩充特征的作用。

这篇关于数据预处理——One-hot编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967815

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性