4.2、从RDBMS向Neo4j导数据【专题四:数据处理】

2024-05-07 15:18

本文主要是介绍4.2、从RDBMS向Neo4j导数据【专题四:数据处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、目标

  介绍将从PostgreSQL(RDBMS)导出的数据导入Neo4j(GraphDB),即将关系数据库模式建模,使之形成图。
  预备知识:熟悉图模型并安装neo4j服务

2、导RDBMS数据到Neo4j

2.1、RDBMS数据集

  用到的数据集是NorthWind dataset(点击下载),该数据库的E-R图如下:

2.2、构建图模型

  当将E-R模型转换成图模型时,需要遵守如下规则:
  (1)一行仅表示一个节点(node)
  (2)一个表名对应一个Label名
  NorthWind dataset表示成图模型的一个局部示意图如下:
  
  #图模型和E-R模型的区别:
  (1)前者的节点和边没有空值,而后者的字段存在空值;(2)前者描述“关系”(通过边)更加详尽,而且边可以添加元数据;(3)前者对于描述网络关系更加标准化。

2.3、将数据导出成CSV

  通过copy和export将PostgreSQL中的部分表导出:

COPY (SELECT * FROM customers) TO '/tmp/customers.csv' WITH CSV header;COPY (SELECT * FROM suppliers) TO '/tmp/suppliers.csv' WITH CSV header;COPY (SELECT * FROM products)  TO '/tmp/products.csv' WITH CSV header;COPY (SELECT * FROM employees) TO '/tmp/employees.csv' WITH CSV header;COPY (SELECT * FROM categories) TO '/tmp/categories.csv' WITH CSV header;COPY (SELECT * FROM ordersLEFT OUTER JOIN order_details ON order_details.OrderID = orders.OrderID) TO '/tmp/orders.csv' WITH CSV header;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

2.4、基于Cypher导入数据

  通过Cypher的LOAD CSV实现数据导入
  (1)创建节点
  import_csv.cypher如下:

// Create customers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:customers.csv" AS row
CREATE (:Customer {companyName: row.CompanyName, customerID: row.CustomerID, fax: row.Fax, phone: row.Phone});// Create products
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
CREATE (:Product {productName: row.ProductName, productID: row.ProductID, unitPrice: toFloat(row.UnitPrice)});// Create suppliers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:suppliers.csv" AS row
CREATE (:Supplier {companyName: row.CompanyName, supplierID: row.SupplierID});// Create employees
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
CREATE (:Employee {employeeID:row.EmployeeID,  firstName: row.FirstName, lastName: row.LastName, title: row.Title});// Create categories
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:categories.csv" AS row
CREATE (:Category {categoryID: row.CategoryID, categoryName: row.CategoryName, description: row.Description});USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MERGE (order:Order {orderID: row.OrderID}) ON CREATE SET order.shipName =  row.ShipName;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

  (2)创建索引
  对刚创建的节点建立索引,以便在下一步创建边关系的时候能快速检索到各点。

CREATE INDEX ON :Product(productID);CREATE INDEX ON :Product(productName);CREATE INDEX ON :Category(categoryID);CREATE INDEX ON :Employee(employeeID);CREATE INDEX ON :Supplier(supplierID);CREATE INDEX ON :Customer(customerID);CREATE INDEX ON :Customer(customerName);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

  (3)创建边关系
  首先创建products和employees的边关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (product:Product {productID: row.ProductID})
MERGE (order)-[pu:PRODUCT]->(product)
ON CREATE SET pu.unitPrice = toFloat(row.UnitPrice), pu.quantity = toFloat(row.Quantity);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (employee:Employee {employeeID: row.EmployeeID})
MERGE (employee)-[:SOLD]->(order);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (customer:Customer {customerID: row.CustomerID})
MERGE (customer)-[:PURCHASED]->(order);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

  其次,创建products, suppliers, and categories的边关系.

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (supplier:Supplier {supplierID: row.SupplierID})
MERGE (supplier)-[:SUPPLIES]->(product);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (category:Category {categoryID: row.CategoryID})
MERGE (product)-[:PART_OF]->(category);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

  然后,创建employees之间的“REPORTS_TO”关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
MATCH (employee:Employee {employeeID: row.EmployeeID})
MATCH (manager:Employee {employeeID: row.ReportsTo})
MERGE (employee)-[:REPORTS_TO]->(manager);
  • 1
  • 2
  • 3
  • 4
  • 5

  最后,为优化查询速度,在orders上创建唯一性约束:

CREATE CONSTRAINT ON (o:Order) ASSERT o.orderID IS UNIQUE;
  • 1

  此外,也可以通过运行整个脚本一次性完成所上述工作:

bin/neo4j-shell -path northwind.db -file import_csv.cypher.
  • 1

  (4)最终成果
  
  附:(1)Northwind SQL, CSV and Cypher data files (zip)
  (2)Tool:SQL to Neo4j Import

这篇关于4.2、从RDBMS向Neo4j导数据【专题四:数据处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967719

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本