4.2、从RDBMS向Neo4j导数据【专题四:数据处理】

2024-05-07 15:18

本文主要是介绍4.2、从RDBMS向Neo4j导数据【专题四:数据处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、目标

  介绍将从PostgreSQL(RDBMS)导出的数据导入Neo4j(GraphDB),即将关系数据库模式建模,使之形成图。
  预备知识:熟悉图模型并安装neo4j服务

2、导RDBMS数据到Neo4j

2.1、RDBMS数据集

  用到的数据集是NorthWind dataset(点击下载),该数据库的E-R图如下:

2.2、构建图模型

  当将E-R模型转换成图模型时,需要遵守如下规则:
  (1)一行仅表示一个节点(node)
  (2)一个表名对应一个Label名
  NorthWind dataset表示成图模型的一个局部示意图如下:
  
  #图模型和E-R模型的区别:
  (1)前者的节点和边没有空值,而后者的字段存在空值;(2)前者描述“关系”(通过边)更加详尽,而且边可以添加元数据;(3)前者对于描述网络关系更加标准化。

2.3、将数据导出成CSV

  通过copy和export将PostgreSQL中的部分表导出:

COPY (SELECT * FROM customers) TO '/tmp/customers.csv' WITH CSV header;COPY (SELECT * FROM suppliers) TO '/tmp/suppliers.csv' WITH CSV header;COPY (SELECT * FROM products)  TO '/tmp/products.csv' WITH CSV header;COPY (SELECT * FROM employees) TO '/tmp/employees.csv' WITH CSV header;COPY (SELECT * FROM categories) TO '/tmp/categories.csv' WITH CSV header;COPY (SELECT * FROM ordersLEFT OUTER JOIN order_details ON order_details.OrderID = orders.OrderID) TO '/tmp/orders.csv' WITH CSV header;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

2.4、基于Cypher导入数据

  通过Cypher的LOAD CSV实现数据导入
  (1)创建节点
  import_csv.cypher如下:

// Create customers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:customers.csv" AS row
CREATE (:Customer {companyName: row.CompanyName, customerID: row.CustomerID, fax: row.Fax, phone: row.Phone});// Create products
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
CREATE (:Product {productName: row.ProductName, productID: row.ProductID, unitPrice: toFloat(row.UnitPrice)});// Create suppliers
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:suppliers.csv" AS row
CREATE (:Supplier {companyName: row.CompanyName, supplierID: row.SupplierID});// Create employees
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
CREATE (:Employee {employeeID:row.EmployeeID,  firstName: row.FirstName, lastName: row.LastName, title: row.Title});// Create categories
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:categories.csv" AS row
CREATE (:Category {categoryID: row.CategoryID, categoryName: row.CategoryName, description: row.Description});USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MERGE (order:Order {orderID: row.OrderID}) ON CREATE SET order.shipName =  row.ShipName;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

  (2)创建索引
  对刚创建的节点建立索引,以便在下一步创建边关系的时候能快速检索到各点。

CREATE INDEX ON :Product(productID);CREATE INDEX ON :Product(productName);CREATE INDEX ON :Category(categoryID);CREATE INDEX ON :Employee(employeeID);CREATE INDEX ON :Supplier(supplierID);CREATE INDEX ON :Customer(customerID);CREATE INDEX ON :Customer(customerName);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

  (3)创建边关系
  首先创建products和employees的边关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (product:Product {productID: row.ProductID})
MERGE (order)-[pu:PRODUCT]->(product)
ON CREATE SET pu.unitPrice = toFloat(row.UnitPrice), pu.quantity = toFloat(row.Quantity);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (employee:Employee {employeeID: row.EmployeeID})
MERGE (employee)-[:SOLD]->(order);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:orders.csv" AS row
MATCH (order:Order {orderID: row.OrderID})
MATCH (customer:Customer {customerID: row.CustomerID})
MERGE (customer)-[:PURCHASED]->(order);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

  其次,创建products, suppliers, and categories的边关系.

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (supplier:Supplier {supplierID: row.SupplierID})
MERGE (supplier)-[:SUPPLIES]->(product);USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:products.csv" AS row
MATCH (product:Product {productID: row.ProductID})
MATCH (category:Category {categoryID: row.CategoryID})
MERGE (product)-[:PART_OF]->(category);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

  然后,创建employees之间的“REPORTS_TO”关系。

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:employees.csv" AS row
MATCH (employee:Employee {employeeID: row.EmployeeID})
MATCH (manager:Employee {employeeID: row.ReportsTo})
MERGE (employee)-[:REPORTS_TO]->(manager);
  • 1
  • 2
  • 3
  • 4
  • 5

  最后,为优化查询速度,在orders上创建唯一性约束:

CREATE CONSTRAINT ON (o:Order) ASSERT o.orderID IS UNIQUE;
  • 1

  此外,也可以通过运行整个脚本一次性完成所上述工作:

bin/neo4j-shell -path northwind.db -file import_csv.cypher.
  • 1

  (4)最终成果
  
  附:(1)Northwind SQL, CSV and Cypher data files (zip)
  (2)Tool:SQL to Neo4j Import

这篇关于4.2、从RDBMS向Neo4j导数据【专题四:数据处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967719

相关文章

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息