机器学习之SMOTE重采样--解决样本标签不均匀问题

2024-05-07 15:12

本文主要是介绍机器学习之SMOTE重采样--解决样本标签不均匀问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、SMOTE原理

通常在处理分类问题中数据不平衡类别。使用SMOTE算法对其中的少数类别进行过采样,以使其与多数类别的样本数量相当或更接近。SMOTE的全称是Synthetic Minority Over-Sampling Technique 即“人工少数类过采样法”,非直接对少数类进行重采样,而是设计算法来人工合成一些新的少数样本。



二、使用

1.安装库

python提供了就是一个处理不均衡数据的imblearn库;其基于机器学习常用sklearn开发而成,使用方法和sklearn库十分相似,上手非常容易。imblearn库对不平衡数据的主要处理方法主要分为如下四种:

  1. 欠采样
  2. 过采样
  3. 联合采样
  4. 集成采样

包含了各种常用的不平衡数据处理方法,例如:随机过采样,SMOTE及其变形方法,tom-links欠采样,编辑最近邻欠采样方法等等。

pip3 install imbalanced-learn



2. 使用

安装完之后就可以从imblearn 导出SMOTE算法了:

from imblearn.over_sampling import SMOTEsm =  SMOTE(
sampling_strategy = ‘auto’,
random_state = None, ## 随机器设定
k_neighbors = 5, ## 用相近的 5 个样本(中的一个)生成正样本
m_neighbors = 10, ## 当使用 kind={'borderline1', 'borderline2', 'svm'}
out_step =0.5, ## 当使用 kind = 'svm'
kind = 'regular', ## 随机选取少数类的样本
– borderline1: 最近邻中的随机样本b与该少数类样本a来自于不同的类
– borderline2: 随机样本b可以是属于任何一个类的样本;
– svm:使用支持向量机分类器产生支持向量然后再生成新的少数类样本
svm_estimator = SVC(), ## svm 分类器的选取
n_jobs = 1, ## 使用的例程数,为-1时使用全部CPU
ratio=None
)

仅用正样本的K近邻生成新正样本是正是SMOTE方法,考虑到(SMOTE的最终目的是分清正负样本的边界),所以需要对样本生成进行优化



3. 优化

SMOTE优化bordeline1方法

Dgr = [] # 危险集
for i in 正样本:1) 计算点 i 在训练集 D 上的 m 个最近邻。x =  i 的最近邻中属于负样本的数量2) 如果 x  = m,则 p 是一个噪声next3) 如果 0 ≤ x ≤ m/2, 则说明p很安全next4) 如果 m/2 ≤ x ≤ m, 那么点p就很危险了,我们需要在这个点附近生成一些新的少数类点Dgr.append(x)
最后,对于每个在危险集(Dgr)中的点,使用SMOTE算法生成新的样本

SMOTE优化 borderline2 方法简述

前面1-4步骤均同 borderline1 方法
在最后进行SMOTE的时候:
采用了 比例分配 生成新样本
for i in Dgr:1) 正样本 K 个近邻2) 负样本 K 个近邻3) 正样本 K 个近邻选取 alpha 比例的样本点 和 i 作随机的线性插值 ==>> 新正样本点4) 负样本K个近邻选取 (1 - alpha) 比例的样本点 和 i 作随机的线性插值 ==>> 新正样本点




三、例子

Original dataset shape Counter({1: 900, 0: 100})
Resampled dataset shape Counter({0: 900, 1: 900})

from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from collections import Counter
import matplotlib.pyplot as plt# 创建一个不平衡的数据集
X, y = make_classification(n_classes=2, class_sep=2,weights=[0.1, 0.9], n_informative=3, n_redundant=1,flip_y=0, n_features=20, n_clusters_per_class=1,n_samples=1000, random_state=10)print('Original dataset shape %s' % Counter(y))# 使用SMOTE算法平衡数据集
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)print('Resampled dataset shape %s' % Counter(y_resampled))# 可视化原始数据集和平衡后的数据集
plt.figure(figsize=(16, 6))plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, marker='o', cmap='coolwarm', alpha=0.6)
plt.title('Original Dataset')plt.subplot(1, 2, 2)
plt.scatter(X_resampled[:, 0], X_resampled[:, 1], c=y_resampled, marker='o', cmap='coolwarm', alpha=0.6)
plt.title('Resampled Dataset')plt.tight_layout()
plt.show()

这个示例中,首先生成一个不平衡的二分类数据集,然后使用SMOTE算法来生成新的合成样本,使得两个类别的样本数量相等。最后原始数据集和平衡后的数据集进行可视化展示。
在这里插入图片描述

这篇关于机器学习之SMOTE重采样--解决样本标签不均匀问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967705

相关文章

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”