机器学习之SMOTE重采样--解决样本标签不均匀问题

2024-05-07 15:12

本文主要是介绍机器学习之SMOTE重采样--解决样本标签不均匀问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、SMOTE原理

通常在处理分类问题中数据不平衡类别。使用SMOTE算法对其中的少数类别进行过采样,以使其与多数类别的样本数量相当或更接近。SMOTE的全称是Synthetic Minority Over-Sampling Technique 即“人工少数类过采样法”,非直接对少数类进行重采样,而是设计算法来人工合成一些新的少数样本。



二、使用

1.安装库

python提供了就是一个处理不均衡数据的imblearn库;其基于机器学习常用sklearn开发而成,使用方法和sklearn库十分相似,上手非常容易。imblearn库对不平衡数据的主要处理方法主要分为如下四种:

  1. 欠采样
  2. 过采样
  3. 联合采样
  4. 集成采样

包含了各种常用的不平衡数据处理方法,例如:随机过采样,SMOTE及其变形方法,tom-links欠采样,编辑最近邻欠采样方法等等。

pip3 install imbalanced-learn



2. 使用

安装完之后就可以从imblearn 导出SMOTE算法了:

from imblearn.over_sampling import SMOTEsm =  SMOTE(
sampling_strategy = ‘auto’,
random_state = None, ## 随机器设定
k_neighbors = 5, ## 用相近的 5 个样本(中的一个)生成正样本
m_neighbors = 10, ## 当使用 kind={'borderline1', 'borderline2', 'svm'}
out_step =0.5, ## 当使用 kind = 'svm'
kind = 'regular', ## 随机选取少数类的样本
– borderline1: 最近邻中的随机样本b与该少数类样本a来自于不同的类
– borderline2: 随机样本b可以是属于任何一个类的样本;
– svm:使用支持向量机分类器产生支持向量然后再生成新的少数类样本
svm_estimator = SVC(), ## svm 分类器的选取
n_jobs = 1, ## 使用的例程数,为-1时使用全部CPU
ratio=None
)

仅用正样本的K近邻生成新正样本是正是SMOTE方法,考虑到(SMOTE的最终目的是分清正负样本的边界),所以需要对样本生成进行优化



3. 优化

SMOTE优化bordeline1方法

Dgr = [] # 危险集
for i in 正样本:1) 计算点 i 在训练集 D 上的 m 个最近邻。x =  i 的最近邻中属于负样本的数量2) 如果 x  = m,则 p 是一个噪声next3) 如果 0 ≤ x ≤ m/2, 则说明p很安全next4) 如果 m/2 ≤ x ≤ m, 那么点p就很危险了,我们需要在这个点附近生成一些新的少数类点Dgr.append(x)
最后,对于每个在危险集(Dgr)中的点,使用SMOTE算法生成新的样本

SMOTE优化 borderline2 方法简述

前面1-4步骤均同 borderline1 方法
在最后进行SMOTE的时候:
采用了 比例分配 生成新样本
for i in Dgr:1) 正样本 K 个近邻2) 负样本 K 个近邻3) 正样本 K 个近邻选取 alpha 比例的样本点 和 i 作随机的线性插值 ==>> 新正样本点4) 负样本K个近邻选取 (1 - alpha) 比例的样本点 和 i 作随机的线性插值 ==>> 新正样本点




三、例子

Original dataset shape Counter({1: 900, 0: 100})
Resampled dataset shape Counter({0: 900, 1: 900})

from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from collections import Counter
import matplotlib.pyplot as plt# 创建一个不平衡的数据集
X, y = make_classification(n_classes=2, class_sep=2,weights=[0.1, 0.9], n_informative=3, n_redundant=1,flip_y=0, n_features=20, n_clusters_per_class=1,n_samples=1000, random_state=10)print('Original dataset shape %s' % Counter(y))# 使用SMOTE算法平衡数据集
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)print('Resampled dataset shape %s' % Counter(y_resampled))# 可视化原始数据集和平衡后的数据集
plt.figure(figsize=(16, 6))plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, marker='o', cmap='coolwarm', alpha=0.6)
plt.title('Original Dataset')plt.subplot(1, 2, 2)
plt.scatter(X_resampled[:, 0], X_resampled[:, 1], c=y_resampled, marker='o', cmap='coolwarm', alpha=0.6)
plt.title('Resampled Dataset')plt.tight_layout()
plt.show()

这个示例中,首先生成一个不平衡的二分类数据集,然后使用SMOTE算法来生成新的合成样本,使得两个类别的样本数量相等。最后原始数据集和平衡后的数据集进行可视化展示。
在这里插入图片描述

这篇关于机器学习之SMOTE重采样--解决样本标签不均匀问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967705

相关文章

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at