#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度

本文主要是介绍#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是Spark调研笔记的最后一篇,以代码实例说明如何借助Spark平台高效地实现推荐系统CF算法中的物品相似度计算。

在推荐系统中,最经典的推荐算法无疑是协同过滤(Collaborative Filtering, CF),而item-cf又是CF算法中一个实现简单且效果不错的算法。
在item-cf算法中,最关键的步骤是计算物品之间的相似度。本文以代码实例来说明如何利用Spark平台快速计算物品间的余弦相似度。
Cosine Similarity是相似度的一种常用度量,根据《推荐系统实践》一书第2.4.2节关于Item-CF算法部分的说明,其计算公式如下:

举个例子,若对item1有过行为的用户集合为{u1, u2, u3},对item2有过行为的用户集合为{u1, u3, u4, u5},则根据上面的式子,item1和item2间的相似度为2/(3*4),其中分子的2是因为item1的user_list与item2的user_list的交集长度为2,即item1和item2的共现(co-occurence)次数是2。

在工程实现上,根据论文"Empirical Analysis of Predictive Algorithms for Collaborative Filtering"的分析,为对活跃用户做惩罚,引入了IUF (Inverse User Frequency)的概念(与TF-IDF算法引入IDF的思路类似:活跃用户对物品相似度的贡献应该小于不活跃的用户),因此,对余弦相似度做改进后相似度计算公式如下:

可以看到,上式分子部分的1/log(1 + N(u))体现了对活跃用户的惩罚。

此外,通常认为用户在相隔很短的时间内喜欢的物品具有更高相似度。因此,工程实现上,还会考虑时间衰减效应。一种典型的时间衰减函数如下所示:

最终,时间上下文相关的Item-CF算法中的相似度计算公式如下:

上式中,分母部分与标准的相似度公式分母保持一致;分子部分参与运算的是item_i和item_j的共现用户集合,其中,f(t)是时间衰减效应的体现,N(u)对活跃用户做了惩罚。

下面的Python代码是计算物品相似度的Spark任务的代码片段(从HDFS加载用户历史行为日志,计算物品相似度,相似列表取TopN,将相似度计算结果写会HDFS),供大家参考:

[python]  view plain  copy
  1. #!/bin/env/python  
  2.   
  3.   
  4. import pyspark as ps  
  5. import math  
  6. import datetime as dt  
  7. import util  
  8.   
  9.   
  10. def generate_item_pair(x):  
  11.     """ 
  12.         Find co-occurence items of every given user  
  13.         Return a tuple in the format of ((item_0, item_1), cooccurrence_factor). 
  14.     """  
  15.     items = x[1]  
  16.     item_cnt = len(items)  
  17.     alpha = 1  
  18.     for i in items:  
  19.         item1 = i[0]  
  20.         ts1   = i[1]  
  21.         for j in items:  
  22.             item2 = j[0]  
  23.             ts2   = j[1]  
  24.             if item1 != item2:  
  25.                 ## introduce time decay and penalize active users  
  26.                 ft = 1.0 / (1 + alpha * abs(ts1 - ts2))  
  27.                 yield ((item1, item2), (ft / math.log(1 + item_cnt)))  
  28.   
  29.   
  30. def compute_item_similarity(x):  
  31.     items = x[0]  
  32.     cooccurrence = float(x[1])  
  33.     item_dict = g_item_freq_d   
  34.     norm_factor = 5  
  35.     if items[0in item_dict and items[1in item_dict:  
  36.         freq_0 = item_dict[items[0]]  
  37.         freq_1 = item_dict[items[1]]  
  38.         ## calculate similarity between the item pair  
  39.         sim = cooccurrence / math.sqrt(freq_0 * freq_1)  
  40.         ## normalize similarity  
  41.         norm_sim = (cooccurrence / (cooccurrence + norm_factor)) * sim  
  42.         yield (items[0], (items[1], norm_sim))  
  43.   
  44.   
  45. def sort_items(x):  
  46.     """ 
  47.         For a given item, sort all items similar to it as descent (using similarity scores), take topN similar items, and return as the following format: 
  48.         given_item \t sorted_item_0$sorted_score_0,sorted_item_1$sorted_score_1,... 
  49.     """  
  50.     similar_items = list(x[1])  
  51.     if len(similar_items) > 0:  
  52.         ## sort list of (item, score) tuple by score from high to low  
  53.         similar_items.sort(key=lambda x: x[1], reverse=True)  
  54.         ## format the list of sorted items as a string  
  55.         similar_items_str = ",".join(["$".join(map(str,item)) for item in similar_items[0:50]])  
  56.         yield "\t".join([str(x[0]), similar_items_str])  
  57.   
  58.   
  59. def main():  
  60.     base_hdfs_uri = "hdfs://to/user/behavior/log"  
  61.     today = dt.date.today()  
  62.     knn_similarity_file = '%s/%s/knn_sim' % (base_hdfs_uri, today.strftime('%Y%m%d'))  
  63.   
  64.     sc = ps.SparkContext()  
  65.   
  66.     ## load user behavior from hdfs log  
  67.     ## each element in user_item is a tuple: (user, (item, timestamp))  
  68.     history_s = (today - dt.timedelta(8)).strftime('%Y%m%d')  
  69.     history_e = (today - dt.timedelta(2)).strftime('%Y%m%d')  
  70.     input_files = util.get_input_files(action='play', start=history_s, end=history_e)  
  71.     user_item = sc.textFile(",".join(input_files))\  
  72.         .mapPartitions(util.parse_user_item) \  
  73.         .map(lambda x: (x[0], (x[1], x[2]))) \  
  74.         .distinct() \  
  75.         .cache()  
  76.   
  77.     ## compute item frequency and store as a global dict  
  78.     item_freq = user_item.map(lambda x: (x[1][0], 1)) \  
  79.         .reduceByKey(lambda x, y: x + y) \  
  80.         .collect()  
  81.     global g_item_freq_d  
  82.     g_item_freq_d = dict()  
  83.     for x in item_freq:  
  84.         g_item_freq_d[x[0]] = x[1]  
  85.      
  86.     ## compute item similarity and find top n most similar items    
  87.     item_pair_sim = user_item.groupByKey() \  
  88.         .flatMap(generate_item_pair) \  
  89.         .reduceByKey(lambda x, y: x + y) \  
  90.         .flatMap(compute_item_similarity) \  
  91.         .groupByKey() \  
  92.         .flatMap(sort_items) \  
  93.         .cache()  
  94.   
  95.     ## dump to hdfs  
  96.     item_pair_sim.repartition(1).saveAsTextFile(knn_similarity_file)  
  97.   
  98.   
  99. if __name__ == '__main__':  
  100.     main()  

上面的代码中,import util中引入的util只是负责从HDFS获取用户历史日志的文件名列表,非常简单,实现细节这里不赘述。

【参考资料】
1. wikipedia: Collaborative filtering
2. 推荐系统实践(项亮著)第2.4.2节: 基于物品的协同过滤算法
3. Paper: Empirical Analysis of Predictive Algorithms for Collaborative Filtering
4. 推荐系统实践(项亮著)第5.1.6节: 时间上下文相关的ItemCF算法
5.  Spark Programming Guide

========================== EOF ===========================

这篇关于#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967700

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则