使用LMDeploy部署和量化Llama 3模型

2024-05-06 14:44

本文主要是介绍使用LMDeploy部署和量化Llama 3模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

## 引言
在人工智能领域,大型语言模型(LLMs)正变得越来越重要,它们在各种自然语言处理任务中发挥着关键作用。Llama 3是近期发布的一款具有8B和70B参数量的模型,它在性能和效率方面都取得了显著的进步。为了简化Llama 3的部署和量化过程,lmdeploy团队提供了强大的支持。本文将详细介绍如何使用LMDeploy工具来部署和量化Llama 3模型,以及如何运行视觉多模态大模型Llava-Llama-3。

## LMDeploy和Llama 3模型介绍
### LMDeploy
LMDeploy是一个高效的部署工具,它支持大型模型的部署、量化和API服务封装。它旨在简化从模型准备到服务部署的整个流程。

### Llama 3模型
Llama 3是由InternStudio发布的最新大型语言模型,具有8B和70B两种参数量版本。该模型在多种语言任务上展现出了优异的性能。

## 环境和模型准备
在开始部署之前,需要准备环境和下载模型。以下是环境配置和模型下载的步骤:

1. **环境配置**:使用conda创建一个新的环境并安装PyTorch及其相关依赖。
   ```bash
   conda create -n lmdeploy python=3.10
   conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
   ```

2. **安装LMDeploy**:安装LMDeploy的最新版本。
   ```bash
   pip install -U lmdeploy[all]
   ```

3. **Llama 3模型下载**:从OpenXLab获取模型权重,或者在InternStudio环境中使用软链接。

## LMDeploy Chat CLI工具
LMDeploy提供了一个命令行界面(CLI)工具,可以方便地与模型进行交互。以下是使用CLI工具与Llama 3模型进行对话的示例:

```bash
conda activate lmdeploy
lmdeploy chat /root/model/Meta-Llama-3-8B-Instruct
```

## LMDeploy模型量化
量化是优化模型以减少内存占用和提高推理速度的过程。LMDeploy支持多种量化方式,包括KV8量化和W4A16量化。

### KV Cache管理
KV Cache是模型运行时占用显存的一部分。通过设置`--cache-max-entry-count`参数,可以控制KV缓存占用显存的最大比例。

### W4A16量化
W4A16量化是一种将模型权重量化为4位整数的方法,它显著减少了模型的显存占用,同时保持了较高的推理效率。

```bash
lmdeploy lite auto_awq /root/model/Meta-Llama-3-8B-Instruct --calib-dataset 'ptb' --calib-samples 128 --calib-seqlen 1024 --w-bits 4 --w-group-size 128 --work-dir /root/model/Meta-Llama-3-8B-Instruct_4bit
```

## LMDeploy服务(serve)
在生产环境中,将模型封装为API接口服务是一种常见的做法。LMDeploy提供了简单的命令来启动API服务器:

```bash
lmdeploy serve api_server /root/model/Meta-Llama-3-8B-Instruct --model-format hf --quant-policy 0 --server-name 0.0.0.0 --server-port 23333 --tp 1
```

## 推理速度
使用LMDeploy在A100(80G)GPU上推理Llama3,每秒请求处理数(RPS)可达到25,显示出高推理效率。

## 使用LMDeploy运行视觉多模态大模型Llava-Llama-3
LMDeploy也支持运行视觉多模态模型,如Llava-Llama-3。以下是安装依赖和运行模型的步骤:

1. **安装依赖**:
   ```bash
   pip install git+https://github.com/haotian-liu/LLaVA.git
   ```

2. **运行模型**:
   ```python
   from lmdeploy import pipeline, ChatTemplateConfig
   from lmdeploy.vl import load_image
   pipe = pipeline('xtuner/llava-llama-3-8b-v1_1-hf',
                   chat_template_config=ChatTemplateConfig(model_name='llama3'))
   image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
   response = pipe(('describe this image', image))
   print(response.text)
   ```

## 结语
LMDeploy是一个强大的工具,它为部署和量化大型语言模型提供了极大的便利。通过本文的指南,读者应该能够理解如何使用LMDeploy来部署Llama 3模型,以及如何运行视觉多模态模型Llava-Llama-3。随着AI技术的不断进步,LMDeploy和类似的工具将变得越来越重要,它们将帮助研究人员和开发人员更高效地利用大型模型。

这篇关于使用LMDeploy部署和量化Llama 3模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/964635

相关文章

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

python之uv使用详解

《python之uv使用详解》文章介绍uv在Ubuntu上用于Python项目管理,涵盖安装、初始化、依赖管理、运行调试及Docker应用,强调CI中使用--locked确保依赖一致性... 目录安装与更新standalonepip 安装创建php以及初始化项目依赖管理uv run直接在命令行运行pytho

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Kotlin 枚举类使用举例

《Kotlin枚举类使用举例》枚举类(EnumClasses)是Kotlin中用于定义固定集合值的特殊类,它表示一组命名的常量,每个枚举常量都是该类的单例实例,接下来通过本文给大家介绍Kotl... 目录一、编程枚举类核心概念二、基础语法与特性1. 基本定义2. 带参数的枚举3. 实现接口4. 内置属性三、

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成