Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算

本文主要是介绍Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯固体和粒子:计算二态系统、简谐振子和爱因斯坦固体的内能和比热,比较爱因斯坦固体和德拜固体。模拟多个粒子的一维和二维随机游走,在数值上确认方差的线性趋势,模拟多个粒子的梯度下降,模拟双井的梯度下降。
  2. 🎯混合物:🖊建立理想气体及其混合物和多相纯物质的属性模型 。
  3. 🎯计算给定条件下的气体数值:🖊氮给定条件下的焦耳-汤姆逊系数 | 🖊气态氧流等熵效率的比功和出口气体温度 | 🖊液态水流量泵的冷却负荷和轴功率 | 🖊甲烷与十二烷合并流温度 | 🖊制冷剂经饱和蒸气压缩后的出口压力 | 🖊液氨储存罐安全体积 | 🖊氮气流过阀门哪一部分变成液体 | 🖊二氧化碳和氧气合流绝热压缩和等温压缩的压缩功率 | 🖊乙烯经两阀门膨胀后的温度 | 🖊蒸馏塔中塔压下降时泄漏率会如何变化 | 🖊丙烯储存容器加热后初始压力和最终温度 | 🖊氧气流被压缩机压缩后,压缩机功率和氧气出口温度 | 🖊热力循环水经过恒压加热、等熵膨胀、恒压冷凝和等熵压缩后的热效率 | 🖊计算甲烷焦耳-汤姆逊系数 | 🖊氨被压缩后,每摩尔压缩机的负荷和出口温度 | 🖊蒸汽压缩循环模拟。
  4. 🎯Python和C++物理计算热力学 | 🎯Python物理差分方程解​

🍇Python水波纹偏微分方程

有一个不可否认的事实:波一直在我们周围。 无论是通过电磁辐射、空气中传播的声音,还是由一滴水引起的涟漪,波绝对无处不在。 尽管其形式多种多样,但在所有波浪中都适用的一件事是控制它们的严格物理规则。 在数学上,所有这些物理规则都浓缩为一个简单的微分方程之一:波动方程。
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
波动方程告诉我们任何波如何在空间中传播并随时间演化,它为我们提供了函数 u(t, x, y),该函数给出了任意时间内任意点 (x, y) 处的波的高度 t。 本质上,如果你告诉波动方程,你把一个球扔进池塘,它会告诉你球产生的涟漪如何随着时间的推移而发展,并允许你预测由此引起的水的变化。 就像你告诉波动方程你尽可能大声尖叫一样,它会告诉你你创建的声波将如何传播并与环境相互作用。 总而言之,通过求解波动方程,我们将能够轻松模拟我们的纹波。

想象一下,两个人最初紧紧地握着一根绳子(红色),然后一个人快速上下移动手,在绳子上释放出波浪。在波穿过这条绳子后拍一张快照,我们想弄清楚它将如何随着时间的推移继续演化。 为了举例说明,我们假设一根无重力的无摩擦绳索。 为了开始解决这个问题,我们首先定义一些变量。

绳索在位置 x 和时间 t 处的高度将被称为函数 u(t, x) 的值。 考虑到这一点,我们要考虑什么可能会导致绳索随着时间的推移而发生变化。 由于我们确定不存在重力或摩擦力,因此作用在绳子上的唯一力就是张力,我们可以想象,张力在绳子的最小和最大高度处最大。

本质上,这是对凹度的陈述,因为张力在沿着绳索的高弯曲点处达到最高,并且随着远离这些点而减弱。 这里最终可以确定的是,在绳索上的任何给定点,它所承受的张力与其凹度成正比。 由于微积分告诉我们函数的凹性是由其在空间中的二阶导数定义的,因此我们可以将其表述为:
F tension  = k ∂ 2 u ∂ x 2 F_{\text {tension }}=k \frac{\partial^2 u}{\partial x^2} Ftension =kx22u
其中 k 是一个简单的比例常数。 现在我们必须找到一种方法,将力用 u 表示,并将其转化为我们可以解决和使用的东西。 研究牛顿第二定律,它告诉我们 F = ma,允许快速替换,结果为:
m a = k ∂ 2 u ∂ x 2 m a=k \frac{\partial^2 u}{\partial x^2} ma=kx22u
其中 m 是该点的质量,a 是加速度,u 是高度,k 是比例常数。 正如物理学告诉我们的那样,任何处理位置的函数的加速度只是其相对于时间的二阶导数,这意味着我们可以将方程重新定义为:
∂ 2 u ∂ t 2 = k m ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2}=\frac{k}{m} \frac{\partial^2 u}{\partial x^2} t22u=mkx22u
离散化波动方程
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
在代码中,网格域将如下所示:

Lx = 10 
Nx = 80 
Ly = 10 
Ny = 80 x_vec = numpy.linspace(0, Lx, Nx) 
dx = x_vec[2] - x_vec[1] y_vec = numpy.linspace(0, Ly, Ny)
dy = y_vec[2] - y_vec[1] 

dt 可以选择,这就是对我有用的数字,c 保持为 1 以保持方程简单。 dt 越小越好,因为它将导致更准确但更慢的模拟。

dt = .025 
Nt = 4000 
c = 1 
u = numpy.zeros([Nt, len(x), len(y)])

如前所述,我们希望在池的中心出现扰动(中心为 (nx/2, ny/2)),因此 t-dt 和 t 的初始条件如下所示:

u[0, Nx // 2, Ny // 2] = numpy.sin(0) 
u[1, Nx // 2, Ny // 2] = numpy.sin(1/10) 

最后,要解决所有问题,我们要做的就是迭代时间并将所有值代入离散方程,从而得到:

for t in range(1, Nt-1):for x in range(1, Nx-1):for y in range(1, Ny-1):if (t < 100):u[t, Nx // 2, Ny // 2] = numpy.sin(t / 10)u[t+1, x, y] = c**2 * dt**2 * ( ((u[t, x+1, y] - 2*u[t, x, y] + u[t, x-1, y])/(dx**2)) + ((u[t, x, y+1] - 2*u[t, x, y] + u[t, x, y-1])/(dy**2)) ) + 2*u[t, x, y] - u[t-1, x, y]

现在您已经通过求解波动方程正式模拟了水波纹!只需迭代计算值并在代码中为每个步骤及时绘制一个曲面:

fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = numpy.meshgrid(x_vec, y_vec)
for t in range(0, Nt):surf = ax.plot_surface(X, Y, u[t], color='b', shade=True,linewidth=0, antialiased=False)ax.view_init(elev=45)ax.set_zlim(-.0001, 2.4)pyplot.axis('off')pyplot.pause(.0001)pyplot.cla()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964613

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数