Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算

本文主要是介绍Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯固体和粒子:计算二态系统、简谐振子和爱因斯坦固体的内能和比热,比较爱因斯坦固体和德拜固体。模拟多个粒子的一维和二维随机游走,在数值上确认方差的线性趋势,模拟多个粒子的梯度下降,模拟双井的梯度下降。
  2. 🎯混合物:🖊建立理想气体及其混合物和多相纯物质的属性模型 。
  3. 🎯计算给定条件下的气体数值:🖊氮给定条件下的焦耳-汤姆逊系数 | 🖊气态氧流等熵效率的比功和出口气体温度 | 🖊液态水流量泵的冷却负荷和轴功率 | 🖊甲烷与十二烷合并流温度 | 🖊制冷剂经饱和蒸气压缩后的出口压力 | 🖊液氨储存罐安全体积 | 🖊氮气流过阀门哪一部分变成液体 | 🖊二氧化碳和氧气合流绝热压缩和等温压缩的压缩功率 | 🖊乙烯经两阀门膨胀后的温度 | 🖊蒸馏塔中塔压下降时泄漏率会如何变化 | 🖊丙烯储存容器加热后初始压力和最终温度 | 🖊氧气流被压缩机压缩后,压缩机功率和氧气出口温度 | 🖊热力循环水经过恒压加热、等熵膨胀、恒压冷凝和等熵压缩后的热效率 | 🖊计算甲烷焦耳-汤姆逊系数 | 🖊氨被压缩后,每摩尔压缩机的负荷和出口温度 | 🖊蒸汽压缩循环模拟。
  4. 🎯Python和C++物理计算热力学 | 🎯Python物理差分方程解​

🍇Python水波纹偏微分方程

有一个不可否认的事实:波一直在我们周围。 无论是通过电磁辐射、空气中传播的声音,还是由一滴水引起的涟漪,波绝对无处不在。 尽管其形式多种多样,但在所有波浪中都适用的一件事是控制它们的严格物理规则。 在数学上,所有这些物理规则都浓缩为一个简单的微分方程之一:波动方程。
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
波动方程告诉我们任何波如何在空间中传播并随时间演化,它为我们提供了函数 u(t, x, y),该函数给出了任意时间内任意点 (x, y) 处的波的高度 t。 本质上,如果你告诉波动方程,你把一个球扔进池塘,它会告诉你球产生的涟漪如何随着时间的推移而发展,并允许你预测由此引起的水的变化。 就像你告诉波动方程你尽可能大声尖叫一样,它会告诉你你创建的声波将如何传播并与环境相互作用。 总而言之,通过求解波动方程,我们将能够轻松模拟我们的纹波。

想象一下,两个人最初紧紧地握着一根绳子(红色),然后一个人快速上下移动手,在绳子上释放出波浪。在波穿过这条绳子后拍一张快照,我们想弄清楚它将如何随着时间的推移继续演化。 为了举例说明,我们假设一根无重力的无摩擦绳索。 为了开始解决这个问题,我们首先定义一些变量。

绳索在位置 x 和时间 t 处的高度将被称为函数 u(t, x) 的值。 考虑到这一点,我们要考虑什么可能会导致绳索随着时间的推移而发生变化。 由于我们确定不存在重力或摩擦力,因此作用在绳子上的唯一力就是张力,我们可以想象,张力在绳子的最小和最大高度处最大。

本质上,这是对凹度的陈述,因为张力在沿着绳索的高弯曲点处达到最高,并且随着远离这些点而减弱。 这里最终可以确定的是,在绳索上的任何给定点,它所承受的张力与其凹度成正比。 由于微积分告诉我们函数的凹性是由其在空间中的二阶导数定义的,因此我们可以将其表述为:
F tension  = k ∂ 2 u ∂ x 2 F_{\text {tension }}=k \frac{\partial^2 u}{\partial x^2} Ftension =kx22u
其中 k 是一个简单的比例常数。 现在我们必须找到一种方法,将力用 u 表示,并将其转化为我们可以解决和使用的东西。 研究牛顿第二定律,它告诉我们 F = ma,允许快速替换,结果为:
m a = k ∂ 2 u ∂ x 2 m a=k \frac{\partial^2 u}{\partial x^2} ma=kx22u
其中 m 是该点的质量,a 是加速度,u 是高度,k 是比例常数。 正如物理学告诉我们的那样,任何处理位置的函数的加速度只是其相对于时间的二阶导数,这意味着我们可以将方程重新定义为:
∂ 2 u ∂ t 2 = k m ∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial t^2}=\frac{k}{m} \frac{\partial^2 u}{\partial x^2} t22u=mkx22u
离散化波动方程
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2}=c^2\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right) t22u=c2(x22u+y22u)
在代码中,网格域将如下所示:

Lx = 10 
Nx = 80 
Ly = 10 
Ny = 80 x_vec = numpy.linspace(0, Lx, Nx) 
dx = x_vec[2] - x_vec[1] y_vec = numpy.linspace(0, Ly, Ny)
dy = y_vec[2] - y_vec[1] 

dt 可以选择,这就是对我有用的数字,c 保持为 1 以保持方程简单。 dt 越小越好,因为它将导致更准确但更慢的模拟。

dt = .025 
Nt = 4000 
c = 1 
u = numpy.zeros([Nt, len(x), len(y)])

如前所述,我们希望在池的中心出现扰动(中心为 (nx/2, ny/2)),因此 t-dt 和 t 的初始条件如下所示:

u[0, Nx // 2, Ny // 2] = numpy.sin(0) 
u[1, Nx // 2, Ny // 2] = numpy.sin(1/10) 

最后,要解决所有问题,我们要做的就是迭代时间并将所有值代入离散方程,从而得到:

for t in range(1, Nt-1):for x in range(1, Nx-1):for y in range(1, Ny-1):if (t < 100):u[t, Nx // 2, Ny // 2] = numpy.sin(t / 10)u[t+1, x, y] = c**2 * dt**2 * ( ((u[t, x+1, y] - 2*u[t, x, y] + u[t, x-1, y])/(dx**2)) + ((u[t, x, y+1] - 2*u[t, x, y] + u[t, x, y-1])/(dy**2)) ) + 2*u[t, x, y] - u[t-1, x, y]

现在您已经通过求解波动方程正式模拟了水波纹!只需迭代计算值并在代码中为每个步骤及时绘制一个曲面:

fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = numpy.meshgrid(x_vec, y_vec)
for t in range(0, Nt):surf = ax.plot_surface(X, Y, u[t], color='b', shade=True,linewidth=0, antialiased=False)ax.view_init(elev=45)ax.set_zlim(-.0001, 2.4)pyplot.axis('off')pyplot.pause(.0001)pyplot.cla()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python氮氧甲烷乙烷乙烯丙烯气体和固体热力学模型计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964613

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1