初学python记录:力扣1235. 规划兼职工作

2024-05-05 23:44

本文主要是介绍初学python记录:力扣1235. 规划兼职工作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:

你打算利用空闲时间来做兼职工作赚些零花钱。

这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]

给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。

注意,时间上出现重叠的 2 份工作不能同时进行。

如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。

提示:

  • 1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
  • 1 <= startTime[i] < endTime[i] <= 10^9
  • 1 <= profit[i] <= 10^4

思考:

解法一——动态规划(以时间作为划分)

设f(x)为在时间为x时能获得的最大报酬,

设正好在x结束的工作开始于时间m,报酬为p,那么

f(x) = max(f(x-1), f(m_1)+p_1, f(m_2)+p_2, ......) 

代码如下:

class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:dp[i]表示在时间为i时能获得的最大报酬# f(x) = max(f(x-1), f(m)+p)   设正好在x结束的所有工作开始于m,报酬为pn = max(endTime)dp = [0 for _ in range(n+1)]for i in range(2, n+1):candidate = []  # 记录所有"f(m)+p"for index, value in enumerate(endTime):if value == i:candidate.append(dp[startTime[index]] + profit[index])if candidate:dp[i] = max(dp[i - 1], max(candidate))else:dp[i] = dp[i - 1]return dp[n]

超时,卡在第 21 / 35 个例子:

 

优化 

可以将遍历endtime数组找到刚好在x结束的所有工作这一步提到最前面,避免每次计算f(x)时都要遍历一次。代码如下:

from collections import defaultdict
class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:dp[i]表示在时间为i时能获得的最大报酬# f(x) = max(f(x-1), f(m)+p)   设正好在x结束的所有工作开始于m,报酬为pn = max(endTime)dp = [0 for _ in range(n+1)]end_index = defaultdict(list)   # 键为结束时间,值为这份工作的索引for index, time in enumerate(endTime):end_index[time].append(index)for i in range(2, n+1):if not end_index[i]:dp[i] = dp[i - 1]else:candidate = []  # 记录所有"f(m)+p"for index in end_index[i]:candidate.append(dp[startTime[index]] + profit[index])dp[i] = max(dp[i - 1], max(candidate))return dp[n]

时间上确实加快了,但是卡在一个特殊的测试例子上,超内存了:

原因是只有四项工作待选,但是用时间划分的话,dp数组的长度有1000000001,显然在这种情况下仍然按时间划分造成了内存极大浪费。

解法二——动态规划(以工作作为划分)

那么换一个思路,将所有工作按结束时间排序,以是否选择每一项工作作为划分。

设f(x)表示在第x个结束的工作结束时,能获得的最大报酬,即 选择工作x 或者 不选择工作x 这两种决策得到的报酬更大值。公式如下,其中y是满足endtime(y) <= starttime(x) 条件的工作索引最大值,如果不存在这样的y,则f(y)取0:

 f(x) = max(f(x-1), f(y)+profit(x))

为了减少耗时,这里找y使用二分查找。代码如下:

from collections import defaultdict
class Solution:def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:# 动态规划:f(x)表示在第x个结束的工作结束时,能获得的最大报酬,即 选择工作x 或者 不选择工作x 的报酬更大值# 公式如下,其中y是满足endtime(y) <= starttime(x) 条件的工作索引最大值,如果不存在这样的y,则f(y)取0# f(x) = max(f(x-1), f(y)+profit(x))# 将所有工作按结束时间排序combined_list = list(zip(startTime, endTime, profit))combined_list = sorted(combined_list, key = lambda x : x[1])n = len(profit)dp = [-1 for _ in range(n)]dp[0] = combined_list[0][2]for x in range(1, n):# 找到工作y:满足endtime(y) <= starttime(x) 条件的最大值left = 0right = x - 1f_y = 0while left <= right:mid = (left + right) // 2if combined_list[mid][1] <= combined_list[x][0]:f_y = dp[mid]left = mid + 1else:right = mid - 1# f(x) = max(f(x-1), f(y)+profit(x))dp[x] = max(dp[x-1], f_y + combined_list[x][2])return dp[n-1]

提交通过,耶耶耶: 

 

这篇关于初学python记录:力扣1235. 规划兼职工作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962979

相关文章

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进