R语言实战——中国职工平均工资的变化分析——相关与回归分析

2024-05-05 23:20

本文主要是介绍R语言实战——中国职工平均工资的变化分析——相关与回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接:
R语言学习—1—将数据框中某一列数据改成行名
R语言学习—2—安德鲁斯曲线分析时间序列数据
R语言学习—3—基本操作
R语言学习—4—数据矩阵及R表示
R语言的学习—5—多元数据直观表示
R语言学习—6—多元相关与回归分析

1、源数据

各行业平均工资变化
在这里插入图片描述
各地区平均工资变化
在这里插入图片描述
全国平均工资变化
在这里插入图片描述

2、数据导入与预处理

在这里插入图片描述

导入数据

行业工资
在这里插入图片描述
地区工资
在这里插入图片描述
检查发现
在这里插入图片描述
在这里插入图片描述

处理结果

在这里插入图片描述
在这里插入图片描述

3、汇总统计

在这里插入图片描述
在这里插入图片描述

4、真实值可视化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、相关矩阵

行业工资相关矩阵

在这里插入图片描述
在这里插入图片描述

结论

1.大多数行业之间的相关性较高,特别是I业相关的行业,如"agricult"、“explore”、 “manufact”、 “electric” 等,它们之间的相关系数都接近1,这表明它们的工资水
平变化很可能相互关联。
2.与其他行业相比,“others” 与大多数行业的相关性较低,相关系数都在0.5左右。这可能意味着它的工资水平与其他行业的工资水平变化关系较弱。
3. “wellfare"和"educatio”、“research”、 “governme” 之间的相关性相对较高,这可能反映了教育、研究和政府部门之间的相互关联。

地区工资相关矩阵

在这里插入图片描述

结论

1.大多数地区之间的相关性都比较高,特别是在接近1的值。这表明这些地区的工资水平变化很可能是相互关联的,即当一个地区的工资增加时,其他地区的工资也很可能增加,反之亦然。
2.每个地区与其他地区之间的相关性几乎都接近1,这可能反映了整体经济发展趋势的影响。例如,北京、上海、广东等经济发达地区之间的相关性较高,这符合它们在经济上相互依存的情况。
3.与其他地区相比,西藏的相关性较低,这可能是由于西藏的地理位置和经济结构与其他地区有较大的差异,导致其工资水平与其他地区的工资水平变化关系较弱。
4.青海与其他地区之间的相关性也较低,这可能是由于青海的经济发展水平相对较低,与其他地区相比,工资水平变化受到的影响较小。

5、相关矩阵散点图

行业工资矩阵散点图

在这里插入图片描述

地区工资矩阵散点图

在这里插入图片描述

6、相关性检验

1.相关系数和显著性检验(t值和p值) :
●相关系数给出了每对变量之间的相关性强度,范围在-1到1之间。值越接近1或-1,表示变量之间的相关性越强,正值表示正相关,负值表示负相关。
●t值是用于判断相关系数是否显著的统计量,如果t值越大,相关性越显著。通常t值的绝对值超过1.96 (对应p值小于0.05)可以认为相关性是显著的。
●p值用于衡量相关性是否显著,通常取值在0到1之间,p值小于显著性水平(例如0.05)时,相关性被认为是显著的。
2.解释:
●如果相关系数高且显著(t值大,p值小), 那么变量之间存在较强的线性相关性。
●如果相关系数低或者不显著,那么变量之间可能不存在线性相关性。
t值和p值可以帮助判断相关性是否由于随机因素弓|起的。

行业工资

在这里插入图片描述
在这里插入图片描述

结论

1.相关性强度: .
●各行业之间的平均工资存在较强的正相关性。如,"agricult"和"explore’之间的相关系数为0.9976,“manufact"和"explore"之 间的相关系数0.9919。这表明这些行业之间的平均工资很可能随着时间的推移而同时增加或减少。
2.显著性检验:
●大多数行业之间的平均I资相关性都是显著的,这表明它们之间的关系不太可能是由于随机因素导致的。
●但是,对于一些行业(如"others”) ,相关性可能不太显著,因为值较小,p值较大。
3.相关性方向:
●大多数行业之间的相关性是正向的,即平均工资随着时间的推移而同时增加或减少。这可以通过相关系数为正值来确定。
综上所述,这些结果暗示着各行业之间的平均工资具有较强的正相关性,这可能是由于宏观经济因素市场趋势或政策变化等因素的影响。

地区工资

在这里插入图片描述

结论

1.相关性强度:
●各地区之间的平均工资存在较强的正相关性。例如,"beijing"和"tianjin"之间的相关系数为0.9992, “zhejang"和"shandong"之间的相关 系数为0.9951。这表明不同地区之间的平均工资很可能随着时间的推移而同时增加或减少。
2.显著性检验:
●大多数地区之间的平均工资相关性都是显著的,这表明它们之间的关系不太可能是由于随机因素导致的。
●但是,对于一些地区(如"xizang"和"qinghai”) ,相关性可能不太显著,因为t值较小,p值较大。
3.相关性方向:
●大多数地区之间的相关性是正向的,即平均工资随着时间的推移而同时增加或减少。这可以通过相关系数为正值来确定。
综上所述,这些结果暗示着各地区之间的平均工资具有较强的正相关性,这可能是由于宏观经济因素、地区发展水平、人口密度等因素的影响。

7、回归分析与检验

行业工资

(1)一元线性回归及显著性检验

代码分析

在这里插入图片描述

各行业的标准回归系数汇总对比

在这里插入图片描述

结果分析与结论——以government为例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结论

1.方程:
●模型的回归方程是:政府部门]平均工资= -927516.1 + 468.0*年份。
●这意味着政府部门平均工资的截距为-927516.1,每年平均增加468.0。
2.拟合优度:
●模型的多重决定系数为0.7935,表示约79.35%的政府部门平均工资的变异性可以通过年份来解释。
●考虑到模型中的自变数量,调整后的决定系数为0.779,说明模型的拟合效果良好。
3.回归系数:
●年份的回归系数为0.8908,示每年政府部]平均工资的预期增加量。
●对于年份的回归系数进行的t检验显示,这个系数是显著的(p值为3.7e-06) , 表明年份对政府部门平均工资的影响是显著的。
4.方差分析:
●方差分析表明年份对政府部门平均工资的影响是显著的(p值为3.7e-06) 。

综上所述,该模型表明政府部门平均工资随着时间的推移呈上升趋势,且时间对政府部门]平均工资的影响是显著的。

剩余十五个结果结构同上,不再赘述

(2)回归结果可视化

散点图代表真实值,线条表示回归方程
在这里插入图片描述

从图中不难发现这并不是一个理想的模型

(3)改进——三次多项式回归及显著性检验

代码结构同上

在这里插入图片描述

各行业的标准回归系数汇总对比

在这里插入图片描述

结果分析与结论——以government为例

在这里插入图片描述
在这里插入图片描述
1.回归方程:
●模型的回归方程是:政府部门平均工资= 4873.2 + 12254.9年份- 6087.8年份^2 + 839.3*年份^3。
●这个方程包含了年份的三次多项式,因此可以更灵活地拟合数据。
2.拟合优度:
●模型的多重决定系数为0.993,表示约99.3%的政府部i ]平均工资的变异性可以通过这个多项式模
型来解释。
●调整后的决定系数为0.991,说明模型的拟合效果非常好。
3.回归系数: .
●poly(年份, 3)1对应的回归系数为0.8908,表示政府部门]平均工资随时间的增加量。
●poly(年份, 3)2对应的回归系数为0.4425,表示政府部门]平均工资随时间的增加速度的变化。
●poly(年份, 3)3对应的回归系数为0.0610,表示政府部门]平均工资随时间增加速度的变化率的变化
率。
4.方差分析: .
●F-statistic为573, p-value为3.26e-13, 表明模型的回归方程显著。

综上所述,这个多项式回归模型说明政府部门]平均工资随着时间的推移呈现出非线性的变化趋势,且模型的拟合效果非常好,可以很好地解释数据的变化。

(4)改进后的回归结果可视化

在这里插入图片描述
明显拟合效果提高

地区工资

(1)一元线性回归及显著性检验

代码结构同上不再赘述

各地区的标准回归系数汇总对比

在这里插入图片描述

结果分析与结论

在这里插入图片描述
在这里插入图片描述

结论

1.回归方程:
●模型的回归方程是:地区平均工资= -886959.1 + 447.2★年份。
●这个方程表示地区平均工资随着年份的增加而增加,斜率为447.2, 表示每年平均工资增加447.2单
位。
2.拟合优度:
●模型的决定系数为0.903,表示约90.3%的地区平均工资的变异性可以通过这个线性模型来解释。
●调整后的决定系数为0.897,说明模型的拟合效果较好。
3.归系数:
●年份的回归系数为0.9505,表示地区平均工资随时间的增加量。
4.差分析:
●F-statistic为150, p-value为1.55e-09, 表明模型的回归方程显著。
5.复相关系数:
●数据的复相关系数为0.9505,表示年份与地区平均工资之间存在着强相关性。
综上所述,这个线性回归模型说明不同地区平均工资随着时间的推移呈现出线性增长的趋势,且模型的
拟合效果良好,可以很好地解释数据的变化。

(2)回归结果可视化

在这里插入图片描述

(3)改进——三次多项式回归

各地区的标准回归系数汇总对比

在这里插入图片描述

结果分析与结论

在这里插入图片描述
在这里插入图片描述

结论

1.回归方程:
●模型的回归方程是:西藏地区平均工资= 7269 + 26461年份+ 10355年份^2 + 3762*年份^3。
●这个方程表示西藏地区平均工资随着年份的增加而增加,且呈现出三次多项式的形式。
2.拟合优度:
●模型的决定系数为0.9799,表示约98.0%的西藏地区平均工资的变异性可以通过这个三次多项式模型来解释。
●调整后的决定系数为0.976,说明模型的拟合效果较好。
3.回归系数:
●模型中年份的各次项的回归系数为:
●年份: 0.9139
●年份^2: 0.3576
●年份^3:0.1299
●这些系数表示了年份与西藏地区平均工资之间的关系,以及年份的各次方对平均工资的影响。
4.方差分析:
●F-statistic为228, p-value为4.06e-12, 表明模型的回归方程显著。
5.复相关系数:
●模型的多项式数据复相关系数为0.9899,表示年份与西藏地区平均工资之间存在着强相关性。

综上所述,这个三次多项式回归模型说明西藏地区平均工资随着时间的推移呈现出一种复杂的非线性变化趋势,并且模型的拟合效果良好,可以很好地解释数据的变化。

(4)改进后的回归结果可视化

在这里插入图片描述

这篇关于R语言实战——中国职工平均工资的变化分析——相关与回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962940

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe