带文字海报流程自动化

2024-05-05 09:52
文章标签 文字 流程 自动化 海报

本文主要是介绍带文字海报流程自动化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章:

带文字海报流程自动化 - 知乎

项目代码整理在:

https://github.com/liangwq/Chatglm_lora_multi-gpu​github.com/liangwq/Chatglm_lora_multi-gpu

根据用户的输入生成图片prompt模块代码封装:

from openai import OpenAI import json
def json_parse(image_prompt):image_prompt = image_prompt.replace("```\n","")image_prompt = image_prompt.replace("\n```","")# 您提供的字符串data_str =image_prompt #completion.choices[0].message.content# 将字符串转换为JSON对象try:data_json = json.loads(data_str)return data_jsonexcept json.JSONDecodeError as e:print("字符串不是有效的JSON格式:", e)def gen_text_to_image_prompt(user_input): client = OpenAI(api_key="你的阶跃APIkey", base_url="https://api.stepfun.com/v1")completion = client.chat.completions.create(model="step-1-200k",messages=[{"role": "system","content": "你是由阶跃星辰提供的带文字海报生成助手,你擅长中文,英文,以及多种其他语言的对话。在保证用户数据安全的前提下,你能对用户的问题和请求,作出快速和精准的回答。同时,你的回答和建议应该拒绝黄赌毒,暴力恐怖主义的内容",},{"role": "user", "content": "你是带文本海报生成智能助理. \1.根据用户输入内容生成做图需要的描述prompt \2.描述图片详细具体内容 \3.描述图片风格、颜色分布、光影效果、纹理、材质\4.给出图片具体尺寸、比例 \5.适合的配文,按行分句放到list里\6.输出英文结果\7.json格式输出生成结果:{\\"prompt\":\"把上面文本生成图描述+具体信息描述+风格颜色光影纹理材质描述汇总到prompt\",\\"text\":\"适合用户输入场景的配文\",\\"ar\":\"图片长:宽比,数字:数字\",\\"hw\":\"图长宽具体尺寸\",\\"X\":\"文字所在坐标位置值X\,\\"Y\":\"文字所在坐标位置值Y\,\\"is_vertical\":\"文字排版是否竖排\"}"},{"role": "user", "content":user_input},],)out_put_chinese = completion.choices[0].message.contentcompletion = client.chat.completions.create(model="step-1-200k",messages=[{"role": "system","content": "你是由阶跃星辰提供的带文字海报生成助手,你擅长中文,英文,以及多种其他语言的对话。在保证用户数据安全的前提下,你能对用户的问题和请求,作出快速和精准的回答。同时,你的回答和建议应该拒绝黄赌毒,暴力恐怖主义的内容",},{"role": "user", "content": out_put_chinese +"\n把上面中文输出翻译成英文,无关信息不要过多输出" },],)out_put = completion.choices[0].message.contentprint(out_put)out_put = json_parse(out_put)return out_put

图片生成模块封装,根据上面生成的prompt调用图片生成后台服务生成图片。

from gradio_client import Client
def image_generation(image_prompt,ip_url):client = Client(ip_url)image_prompt = image_prompt["prompt"] + " --ar " + image_prompt["ar"]out_data = client.predict(image_prompt,"dpm-solver",14,4.5,0,True)# 图片地址image_path = out_data[0]return image_path

根据用户输入生成prompt中抽取出文字排版的信息对文字排版。

def auto_text_layout(inputext=[], x=0,y=0,row_spacing=100, col_spacing=80, vertical=True, font="SimSun", color=(255, 255, 255, 0)):if vertical:output=[] y0=yfor text in inputext:for char in list(text):output.append({"content": char,"position": (x, y),"font": font,"color": color})y +=   col_spacingy= y0x += row_spacingelse:output=[]x0 = xfor text in inputext:for char in list(text):output.append({"content": char,"position": (x, y),"font": font,"color": color})x += row_spacingx=x0y += col_spacingreturn output

根据生成图片,排版好的文字合成海报模块。

import os
import json
from PIL import Image, ImageDraw, ImageFont
import cv2def text_image_blender_poster(image_url,auto_text,font_path ,font_size,output_dir,out_file_name):# 设置海报模板路径、文字内容、输出目录等参数template_path = image_url  # 海报模板路径text_lines = auto_textoutput_dir = output_dir  # 输出目录font_path =  font_path # 字体文件路径font_size = font_size  # 字体大小# 确保输出目录存在if not os.path.exists(output_dir):os.makedirs(output_dir)# 加载模板图片template_image = Image.open(template_path)# 创建一个可以在Pillow中使用的字体对象font = ImageFont.truetype(font_path, font_size)# 创建一个可以在Pillow中使用的绘图对象draw = ImageDraw.Draw(template_image)# 在指定位置添加文字for line in text_lines:draw.text(line['position'], line['content'], font=font, fill=line['color'])# 保存处理后的图片output_path = os.path.join(output_dir, 'poster_with_multiple_lines.jpg')template_image.save(output_path)# 如果需要进行图层融合和模糊处理,可以使用OpenCV# 读取处理后的图片image = cv2.imread(output_path)# 这里可以添加OpenCV的图层融合和模糊处理代码# 例如,使用高斯模糊blurred_image = cv2.GaussianBlur(image, (5, 5), 0)# 保存模糊处理后的图片cv2.imwrite(os.path.join(output_dir, out_file_name), blurred_image)print("海报生成和处理完成。")

生成海报是否合格验证模块。

from dashscope import MultiModalConversation
import dashscope
dashscope.api_key ='把你申请的qwenvl api-key放这边'
def call_with_local_file(local_file_path):"""Sample of use local file.linux&mac file schema: file:///home/images/test.pngwindows file schema: file://D:/images/abc.png"""local_file_path1 = local_file_path#'file:///Users/**/output_posters/poster_with_multiple_lines.jpg'messages = [{'role': 'system','content': [{'text': 'You are a helpful assistant.'}]}, {'role':'user','content': [{'image': local_file_path1},{'text': '请描述这张图,这张图中文字放置的位置合理吗?符合审美需求吗?\1.如果合理请回复是,并给出合理原因\2.如果不合理给出理由和建议\3.如果有建议请给出文字合适放置的坐标位置\4.如果不合理给出字体大小建议\5.如果不合理给出字体颜色建议\6.json格式输出回答结果'},]}]response = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1, messages=messages)print(response)

把上面的模块串接成自动化流程。

#根据用户输入生成图片生成prompt
image_prompt = gen_text_to_image_prompt("5.1劳动节")#根据ptompt生成图
ip_url ="http://0.0.0.0:6006"
image_url = image_generation(image_prompt,ip_url)#文字排版
text_lines = image_prompt["text"]
vertical = False if image_prompt["is_vertical"]=='false' else True
x =  float(image_prompt["X"])
y =  float(image_prompt["Y"])
auto_text=auto_text_layout(inputext=text_lines, x=x,y=y,row_spacing=48, col_spacing=63, vertical=False, font="SimSun", color=(255, 255, 255, 0))
print(auto_text)#根据生成图片+排版文字合成海报
image_url =image_url
auto_text = auto_text
font_size = 42
output_dir = 'output_posters'
font_path="/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
out_file_name = 'blurred_poster.jpg'
text_image_blender_poster(image_url,auto_text,font_path ,font_size,output_dir,out_file_name)#生成海报是否合格验证模块
local_file_path ='file://'+'/Users/**/output_posters/poster_with_multiple_lines.jpg'
call_with_local_file(local_file_path)

小结:

上面代码实现,根据把海报生成的各模块做了封装,并利用封装了自动化流程。让这条海报生成模块可以根据用户一键生成期待的海报,这只是一个基本流程封装,用户可以根据自己的需要调整每个模块实现,让生成海报符合自己需要。

现在流程只允许用户输入文字描述生成海报,大家如果感兴趣可以对这条链路改造。允许用户输入参考的图,生成类似的海报;允许用户给出参考图,文字创意包生成指定约束的海报...

这篇关于带文字海报流程自动化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961417

相关文章

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

使用JavaConfig配置Spring的流程步骤

《使用JavaConfig配置Spring的流程步骤》JavaConfig是Spring框架提供的一种基于Java的配置方式,它通过使用@Configuration注解标记的类来替代传统的XML配置文... 目录一、什么是 JavaConfig?1. 核心注解2. 与 XML 配置的对比二、JavaConf

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到