nn.GRU层输出:state与output的关系

2024-05-05 08:44
文章标签 输出 关系 output nn state gru

本文主要是介绍nn.GRU层输出:state与output的关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       在 GRU(Gated Recurrent Unit)中,outputstate 都是由 GRU 层的循环计算产生的,它们之间有直接的关系。state 实际上是 output 中最后一个时间步的隐藏状态。

GRU 的基本公式

GRU 的核心计算包括更新门(update gate)和重置门(reset gate),以及候选隐藏状态(candidate hidden state)。数学表达式如下:

  1. 更新门 \( z_t \): \[ z_t = \sigma(W_z \cdot h_{t-1} + U_z \cdot x_t) \]
       其中,\( \sigma \) 是sigmoid 函数,\( W_z \) 和 \( U_z \) 分别是对应于隐藏状态和输入的权重矩阵,\( h_{t-1} \) 是上一个时间步的隐藏状态,\( x_t \) 是当前时间步的输入。

  2. 重置门 \( r_t \):
       \[ r_t = \sigma(W_r \cdot h_{t-1} + U_r \cdot x_t) \]
       \( W_r \) 和 \( U_r \) 是更新门中定义的相似权重矩阵。

  3. 候选隐藏状态 \( \tilde{h}_t \):
       \[ \tilde{h}_t = \tanh(W \cdot r_t \odot h_{t-1} + U \cdot x_t) \]
       这里,\( \tanh \) 是激活函数,\( \odot \) 表示元素乘法(Hadamard product),\( W \) 和 \( U \) 是隐藏状态的权重矩阵。

  4. 最终隐藏状态 \( h_t \):
       \[ h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \]

output 和 state 的关系

  • output:在 GRU 中,output 包含了序列中每个时间步的隐藏状态。具体来说,对于每个时间步 \( t \),output 的第 \( t \) 个元素就是该时间步的隐藏状态 \( h_t \)。

  • state:state 是 GRU 层最后一层的隐藏状态,也就是 output 中最后一个时间步的隐藏状态 \( h_{T-1} \),其中 \( T \) 是序列的长度。

数学表达式

如果我们用 \( O \) 表示 output,\( S \) 表示 state,\( T \) 表示时间步的总数,那么:

\[ O = [h_0, h_1, ..., h_{T-1}] \]
\[ S = h_{T-1} \]

因此,state 实际上是 output 中最后一个元素,即 \( S = O[T-1] \)。

在 PyTorch 中,output 和 state 都是由 GRU 层的 `forward` 方法计算得到的。`output` 是一个三维张量,包含了序列中每个时间步的隐藏状态,而 `state` 是一个二维张量,仅包含最后一个时间步的隐藏状态。

代码示例

class Seq2SeqEncoder(d2l.Encoder):
"""⽤于序列到序列学习的循环神经⽹络编码器"""def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):super(Seq2SeqEncoder, self).__init__(**kwargs)# 嵌⼊层self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = nn.GRU(embed_size, num_hiddens, num_layers,dropout=dropout)def forward(self, X, *args):# 输出'X'的形状:(batch_size,num_steps,embed_size)X = self.embedding(X)# 在循环神经⽹络模型中,第⼀个轴对应于时间步X = X.permute(1, 0, 2)# 如果未提及状态,则默认为0output, state = self.rnn(X)# output的形状:(num_steps,batch_size,num_hiddens)# state的形状:(num_layers,batch_size,num_hiddens)return output, state

output:在完成所有时间步后,最后⼀层的隐状态的输出output是⼀个张量(output由编码器的循环层返回),其形状为(时间步数,批量⼤⼩,隐藏单元数)。

state:最后⼀个时间步的多层隐状态是state的形状是(隐藏层的数量,批量⼤⼩, 隐藏单元的数量)。

这篇关于nn.GRU层输出:state与output的关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961284

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

java -jar example.jar 产生的日志输出到指定文件的方法

《java-jarexample.jar产生的日志输出到指定文件的方法》这篇文章给大家介绍java-jarexample.jar产生的日志输出到指定文件的方法,本文给大家介绍的非常详细,对大家的... 目录怎么让 Java -jar example.jar 产生的日志输出到指定文件一、方法1:使用重定向1、

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.