FloodFill-----洪水灌溉算法(DFS例题详解)

2024-05-04 23:04

本文主要是介绍FloodFill-----洪水灌溉算法(DFS例题详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.图像渲染:

代码详解:

二.岛屿数量:

代码详解:

三.岛屿的最大面积:

代码详解:

四.被围绕的区域:

代码详解:

五.太平洋大西洋水流问题:

代码详解:


FloodFill算法简介:FloodFill(泛洪填充)算法是一种图像处理的基本算法,用于填充连通区域。该算法通常从一个种子点开始,沿着种子点的相邻像素进行填充,直到遇到边界或者其他指定的条件为止。FloodFill 算法的主要应用是在图像编辑软件中实现填充操作,以及在计算机图形学、计算机视觉等领域中进行区域填充。

下面我们通过一些题目来理解这个算法思想:

一.图像渲染:

  • 题目链接:733. 图像渲染 - 力扣(LeetCode)
  • 题目描述:

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 sr ,  sc 和 newColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充 。

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor 。

最后返回 经过上色渲染后的图像 。 ​

  • 对应函数签名如下:

  •  思路:我们从给定的起点开始,进行深度优先搜索(上下左右四个方向)。每次搜索到一个方格时,如果其与初始位置的方格颜色相同,就将该方格的颜色更新,以防止重复搜索;如果不相同,则进行回溯。这里我们设置初始方格为target.

代码详解:

解法一:

class Solution {//记录走过的路径,防止走回头路boolean[][] used;int target;public int[][] floodFill(int[][] image, int sr, int sc, int color) {int m = image.length,n = image[0].length;used = new boolean[m][n];target = image[sr][sc];dfs(image,sr,sc,color);return image;}public void dfs(int[][] image,int i,int j,int color){int m = image.length,n = image[0].length;//剪枝,越界直接返回if(i < 0 || j < 0 || i >= m || j >= n){return ;}//使用过的位置也直接返回if(used[i][j]) return ;if(image[i][j] == target){//上下左右去深搜,符合条件的都标记为colorimage[i][j] = color;used[i][j] = true;dfs(image,i - 1,j,color);dfs(image,i + 1,j,color);dfs(image,i,j - 1,color);dfs(image,i,j + 1,color);}}
}

解法二:基于解法一,我们可以通过定义两个数组来表示方向:dx[ ],dy[ ],其中dx[ ],dy[ ]的位置要一一对应,具体操作如下:

 代码详解:

class Solution {boolean[][] used;int target;int[] dx = {-1,1,0,0};int[] dy = {0,0,1,-1};public int[][] floodFill(int[][] image, int sr, int sc, int color) {int m = image.length,n = image[0].length;used = new boolean[m][n];target = image[sr][sc];dfs(image,sr,sc,color);return image;}public void dfs(int[][] image,int i,int j,int color){int m = image.length,n = image[0].length;//每次进入都进行标记,并将该位置值改为colorused[i][j] = true;image[i][j] = color;//相当于上下左右四个方向进行深搜for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];//所有不符合条件的都不能进入深搜if(x >= 0 && x < m && y >= 0 && y < n&& !used[x][y] && image[x][y] == target){dfs(image,x,y,color);}}}
}

运行结果:

二.岛屿数量:

  • 题目链接:200. 岛屿数量 - 力扣(LeetCode)
  • 题目描述:

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

  •  对应函数签名如下:

  • 思路:
  • 遍历整个矩阵,每次找到「⼀块陆地」的时候:
  •  说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯
  • 并且将这个陆地相连的所有陆地,也就是这块「岛屿」,全部「变成海洋」。这样的话,我们下次 遍历到这块岛屿的时候,它「已经是海洋」了,不会影响最终结果。
  •  其中「变成海洋」的操作,可以利⽤「深搜」来解决

代码详解:

 解法一:与上面一样,两种解法(类似):

class Solution {int res = 0;public int numIslands(char[][] grid) {int m = grid.length,n = grid[0].length;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == '1'){//每次找到一个岛屿记录一下,再将这个岛屿淹没res++;dfs(grid,i,j);}}}return res;}public void dfs(char[][] grid,int i,int j){int m = grid.length,n = grid[0].length;//处理边界情况if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(grid[i][j] == '0') return ;grid[i][j] = '0'; //上下左右去淹没这个岛屿dfs(grid,i - 1,j);dfs(grid,i + 1,j);dfs(grid,i,j - 1);dfs(grid,i,j + 1);}
}

解法二:

class Solution {int res = 0;int[] dx = {0,0,-1,1};int[] dy = {1,-1,0,0};public int numIslands(char[][] grid) {int m = grid.length,n = grid[0].length;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == '1'){//说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯res++;dfs(grid,i,j);//将这个岛屿淹没}}}return res;}public void dfs(char[][] grid,int i,int j){int m = grid.length,n = grid[0].length;grid[i][j] = '0'; for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& grid[x][y] != '0'){dfs(grid,x,y);}}}
}

运行结果:

 

三.岛屿的最大面积:

  • 题目链接:695. 岛屿的最大面积 - 力扣(LeetCode)
  • 题目描述:

    给你一个大小为 m x n 的二进制矩阵 grid 。

    岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

    岛屿的面积是岛上值为 1 的单元格的数目。

    计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 

  • 对应函数签名:

算法思路:

• 遍历整个矩阵,每当遇到⼀块⼟地的时候,就⽤「深搜」或者「宽搜」将与这块⼟地相连的「整个 岛屿」的⾯积计算出来

• 然后在搜索得到的「所有的岛屿⾯积」求⼀个「最⼤值」即可

• 在搜索过程中,为了「防⽌搜到重复的⼟地」:

◦ 可以开⼀个同等规模的「布尔数组」,标记⼀下这个位置是否已经被访问过;

◦ 也可以将原始矩阵的 1 修改成 0 ,但是这样操作会修改原始矩阵。 

代码详解:

 解法一:

class Solution {int maxArea = 0;int count;boolean[][] used;public int maxAreaOfIsland(int[][] grid) {int m = grid.length,n = grid[0].length;used = new boolean[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == 1){//每次找到一个岛屿都要重置计数count = 0;dfs(grid,i,j);maxArea = Math.max(maxArea,count);}}}return maxArea;}public void dfs(int[][] grid,int i,int j){int m = grid.length,n = grid[0].length;//处理边界情况if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(grid[i][j] == 0) return ;if(used[i][j]) return ;used[i][j] = true;count++;dfs(grid,i - 1,j);dfs(grid,i + 1,j);dfs(grid,i,j - 1);dfs(grid,i,j + 1);}
}

解法二:

class Solution {int maxArea = 0;int count = 0;int[] dx = {0,0,-1,1};int[] dy = {1,-1,0,0};boolean[][] used;public int maxAreaOfIsland(int[][] grid) {int m = grid.length,n = grid[0].length;used = new boolean[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(grid[i][j] == 1){//每次找到一个岛屿都要重置计数count = 0;dfs(grid,i,j);maxArea = Math.max(maxArea,count);}}}return maxArea;}public void dfs(int[][] grid,int i,int j){int m = grid.length,n = grid[0].length;used[i][j] = true;count++;for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];//处理不满足条件的情况if(x >= 0 && x < m && y >= 0 && y < n && !used[x][y] && grid[x][y] != 0){dfs(grid,x,y);}}}
}

运行结果:

四.被围绕的区域:

  • 题目链接:130. 被围绕的区域 - 力扣(LeetCode)
  • 题目描述:给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。

  • 对应函数签名:

  • 算法思路: 
  • 正难则反。 可以先利⽤ dfs 将与边缘相连的 '0' 区域做上标记,然后重新遍历矩阵,将没有标记过的 '0' 修改成 'X' 即可。

 

代码详解:

class Solution {boolean[][] used;public void solve(char[][] board) {int m = board.length,n = board[0].length;used = new boolean[m][n];//分别对应上下左右,标记外围的'O'for(int i = 0;i < n;i++){dfs2(board,0,i);dfs2(board,m - 1,i);}for(int j = 0;j < m;j++){dfs2(board,j,0);dfs2(board,j,n - 1);}for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(board[i][j] != 'X' && !used[i][j]){dfs(board,i,j);}}}}//将内部的'O'全部标记为'X'public void dfs(char[][] board,int i,int j){int m = board.length,n = board[0].length;if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(board[i][j] == 'X') return;if(used[i][j]) return ;used[i][j] = true;board[i][j] = 'X';dfs(board,i - 1,j);dfs(board,i + 1,j);dfs(board,i,j - 1);dfs(board,i,j + 1);}//将外围的位置标记为true,后续不会对其进行操作public void dfs2(char[][] board,int i,int j){int m = board.length,n = board[0].length;if(i < 0 || j < 0 || i >= m || j >= n){return ;}if(board[i][j] == 'X') return;if(used[i][j]) return ;used[i][j] = true;dfs2(board,i - 1,j);dfs2(board,i + 1,j);dfs2(board,i,j - 1);dfs2(board,i,j + 1);}
}

运行结果:

五.太平洋大西洋水流问题:

  • 题目链接:417. 太平洋大西洋水流问题 - 力扣(LeetCode)
  • 题目描述:

有一个 m × n 的矩形岛屿,与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。

这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights , heights[r][c] 表示坐标 (r, c) 上单元格 高于海平面的高度 。

岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。

返回网格坐标 result 的 2D 列表 ,其中 result[i] = [ri, ci] 表示雨水从单元格 (ri, ci) 流动 既可流向太平洋也可流向大西洋 。

  • 对应函数标签: 

  •  算法思路:

正难则反。 如果直接去判断某⼀个位置是否既能到⼤西洋也能到太平洋,会重复遍历很多路径。 我们反着来,从⼤西洋沿岸开始反向 dfs ,这样就能找出那些点可以流向⼤西洋;同理,从太平洋沿 岸也反向 dfs ,这样就能找出那些点可以流向太平洋。那么,被标记两次的点,就是我们要找的结果

 

代码详解:

class Solution {int m ,n;int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public List<List<Integer>> pacificAtlantic(int[][] heights) {m = heights.length;n = heights[0].length;boolean[][] pac = new boolean[m][n];boolean[][] atl = new boolean[m][n];//先搞太平洋for(int j = 0;j < n;j++) dfs(heights,0,j,pac);for(int i = 0;i < m;i++) dfs(heights,i,0,pac);//在搞大西洋for(int i = 0;i < m;i++) dfs(heights,i,n - 1,atl);for(int j  = 0;j < n;j++) dfs(heights,m - 1,j,atl);//再提取结果:List<List<Integer>> res = new ArrayList<>();for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(pac[i][j] && atl[i][j]){List<Integer> temp = new ArrayList<>();temp.add(i);temp.add(j);res.add(temp);}}}return res;}public void dfs(int[][] heights,int i,int j,boolean[][] used){used[i][j] = true;for(int k = 0;k < 4;k++){int x = i + dx[k],y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n && !used[x][y] && heights[x][y] >= heights[i][j]){dfs(heights,x,y,used);}}}
}

运行结果:

 

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

这篇关于FloodFill-----洪水灌溉算法(DFS例题详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960285

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar