C++中的RTTI机制详解

2024-05-04 22:08
文章标签 c++ 详解 机制 rtti

本文主要是介绍C++中的RTTI机制详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RTTI是”Runtime Type Information”的缩写,意思是运行时类型信息,它提供了运行时确定对象类型的方法。RTTI并不是什么新的东西,很早就有了这个技术,但是,在实际应用中使用的比较少而已。而我这里就是对RTTI进行总结,今天我没有用到,并不代表这个东西没用。学无止境,先从typeid函数开始讲起。

typeid函数

typeid的主要作用就是让用户知道当前的变量是什么类型的,比如以下代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
int main()
{
     short s = 2;
     unsigned ui = 10;
     int i = 10;
     char ch = 'a';
     wchar_t wch = L'b';
     float f = 1.0f;
     double d = 2;
 
     cout<<typeid(s).name()<<endl; // short
     cout<<typeid(ui).name()<<endl; // unsigned int
     cout<<typeid(i).name()<<endl; // int
     cout<<typeid(ch).name()<<endl; // char
     cout<<typeid(wch).name()<<endl; // wchar_t
     cout<<typeid(f).name()<<endl; // float
     cout<<typeid(d).name()<<endl; // double
 
     return 0;
}

对于C++支持的内建类型,typeid能完全支持,我们通过调用typeid函数,我们就能知道变量的信息。对于我们自定义的结构体,类呢?

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
struct C
{
     void Print() { cout<<"This is struct C."<<endl; }
};
 
int main()
{
     A *pA1 = new A();
     A a2;
 
     cout<<typeid(pA1).name()<<endl; // class A *
     cout<<typeid(a2).name()<<endl; // class A
 
     B *pB1 = new B();
     cout<<typeid(pB1).name()<<endl; // class B *
 
     C *pC1 = new C();
     C c2;
 
     cout<<typeid(pC1).name()<<endl; // struct C *
     cout<<typeid(c2).name()<<endl; // struct C
 
     return 0;
}

是的,对于我们自定义的结构体和类,tpyeid都能支持。在上面的代码中,在调用完typeid之后,都会接着调用name()函数,可以看出typeid函数返回的是一个结构体或者类,然后,再调用这个返回的结构体或类的name成员函数;其实,typeid是一个返回类型为type_info类型的函数。那么,我们就有必要对这个type_info类进行总结一下,毕竟它实际上存放着类型信息。

type_info类

去掉那些该死的宏,在Visual Studio 2012中查看type_info类的定义如下:

复制代码代码如下:

class type_info
{
public:
    virtual ~type_info();
    bool operator==(const type_info& _Rhs) const; // 用于比较两个对象的类型是否相等
    bool operator!=(const type_info& _Rhs) const; // 用于比较两个对象的类型是否不相等
    bool before(const type_info& _Rhs) const;
 
    // 返回对象的类型名字,这个函数用的很多
    const char* name(__type_info_node* __ptype_info_node = &__type_info_root_node) const;
    const char* raw_name() const;
private:
    void *_M_data;
    char _M_d_name[1];
    type_info(const type_info& _Rhs);
    type_info& operator=(const type_info& _Rhs);
    static const char * _Name_base(const type_info *,__type_info_node* __ptype_info_node);
    static void _Type_info_dtor(type_info *);
};

在type_info类中,复制构造函数和赋值运算符都是私有的,同时也没有默认的构造函数;所以,我们没有办法创建type_info类的变量,例如type_info A;这样是错误的。那么typeid函数是如何返回一个type_info类的对象的引用的呢?我在这里不进行讨论,思路就是类的友元函数。

typeid函数的使用

typeid使用起来是非常简单的,常用的方式有以下两种:

1.使用type_info类中的name()函数返回对象的类型名称

就像上面的代码中使用的那样;但是,这里有一点需要注意,比如有以下代码: 

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
int main()
{
     A *pA = new B();
     cout<<typeid(pA).name()<<endl; // class A *
     cout<<typeid(*pA).name()<<endl; // class A
     return 0;
}

我使用了两次typeid,但是两次的参数是不一样的;输出结果也是不一样的;当我指定为pA时,由于pA是一个A类型的指针,所以输出就为class A *;当我指定*pA时,它表示的是pA所指向的对象的类型,所以输出的是class A;所以需要区分typeid(*pA)和typeid(pA)的区别,它们两个不是同一个东西;但是,这里又有问题了,明明pA实际指向的是B,为什么得到的却是class A呢?我们在看下一段代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
int main()
{
     A *pA = new B();
     cout<<typeid(pA).name()<<endl; // class A *
     cout<<typeid(*pA).name()<<endl; // class B
     return 0;
}

好了,我将Print函数变成了虚函数,输出结果就不一样了,这说明什么?这就是RTTI在捣鬼了,当类中不存在虚函数时,typeid是编译时期的事情,也就是静态类型,就如上面的cout<<typeid(*pA).name()<<endl;输出class A一样;当类中存在虚函数时,typeid是运行时期的事情,也就是动态类型,就如上面的cout<<typeid(*pA).name()<<endl;输出class B一样,关于这一点,我们在实际编程中,经常会出错,一定要谨记。

2.使用type_info类中重载的==和!=比较两个对象的类型是否相等

这个会经常用到,通常用于比较两个带有虚函数的类的对象是否相等,例如以下代码: 

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
void Handle(A *a)
{
     if (typeid(*a) == typeid(A))
     {
          cout<<"I am a A truly."<<endl;
     }
     else if (typeid(*a) == typeid(B))
     {
          cout<<"I am a B truly."<<endl;
     }
     else if (typeid(*a) == typeid(C))
     {
          cout<<"I am a C truly."<<endl;
     }
     else
     {
          cout<<"I am alone."<<endl;
     }
}
 
int main()
{
     A *pA = new B();
     Handle(pA);
     delete pA;
     pA = new C();
     Handle(pA);
     return 0;
}

这是一种用法,呆会我再总结如何使用dynamic_cast来实现同样的功能。

dynamic_cast的内幕

在这篇《static_cast、dynamic_cast、const_cast和reinterpret_cast总结》的文章中,也介绍了dynamic_cast的使用,对于dynamic_cast到底是如何实现的,并没有进行说明,而这里就要对于dynamic_cast的内幕一探究竟。首先来看一段代码:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B
{
public:
     virtual void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A, public B
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
int main()
{
     A *pA = new C;
     //C *pC = pA; // Wrong
     C *pC = dynamic_cast<C *>(pA);
     if (pC != NULL)
     {
          pC->Print();
     }
     delete pA;
}

在上面代码中,如果我们直接将pA赋值给pC,这样编译器就会提示错误,而当我们加上了dynamic_cast之后,一切就ok了。那么dynamic_cast在后面干了什么呢?

dynamic_cast主要用于在多态的时候,它允许在运行时刻进行类型转换,从而使程序能够在一个类层次结构中安全地转换类型,把基类指针(引用)转换为派生类指针(引用)。我在《COM编程——接口的背后》这篇博文中总结的那样,当类中存在虚函数时,编译器就会在类的成员变量中添加一个指向虚函数表的vptr指针,每一个class所关联的type_info object也经由virtual table被指出来,通常这个type_info object放在表格的第一个slot。当我们进行dynamic_cast时,编译器会帮我们进行语法检查。如果指针的静态类型和目标类型相同,那么就什么事情都不做;否则,首先对指针进行调整,使得它指向vftable,并将其和调整之后的指针、调整的偏移量、静态类型以及目标类型传递给内部函数。其中最后一个参数指明转换的是指针还是引用。两者唯一的区别是,如果转换失败,前者返回NULL,后者抛出bad_cast异常。对于在typeid函数的使用中所示例的程序,我使用dynamic_cast进行更改,代码如下:

复制代码代码如下:

#include <iostream>
#include <typeinfo>
using namespace std;
 
class A
{
public:
     virtual void Print() { cout<<"This is class A."<<endl; }
};
 
class B : public A
{
public:
     void Print() { cout<<"This is class B."<<endl; }
};
 
class C : public A
{
public:
     void Print() { cout<<"This is class C."<<endl; }
};
 
void Handle(A *a)
{
     if (dynamic_cast<B*>(a))
     {
          cout<<"I am a B truly."<<endl;
     }
     else if (dynamic_cast<C*>(a))
     {
          cout<<"I am a C truly."<<endl;
     }
     else
     {
          cout<<"I am alone."<<endl;
     }
}
 
int main()
{
     A *pA = new B();
     Handle(pA);
     delete pA;
     pA = new C();
     Handle(pA);
     return 0;
}

这个是使用dynamic_cast进行改写的版本。实际项目中,这种方法会使用的更多点。

这篇关于C++中的RTTI机制详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960192

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空