深度学习500问——Chapter08:目标检测(7)

2024-05-04 16:12

本文主要是介绍深度学习500问——Chapter08:目标检测(7),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

8.3.8 RFBNet

8.3.9 M2Det


8.3.8 RFBNet

RFBNet有哪些创新点

1. 提出RF block(RFB)模块

RFBNet主要想利用一些技巧使得轻量级模型在速度和精度上达到很好的trade-off的检测器。灵感来自人类视觉的感受野结构Receptive Fields(RFs),提出了新奇的RF block(RFB)模块,来验证感受野尺寸和方向性的对提高有鉴别器鲁棒特征的关系。RFBNet是以主干网络(backbone)为VGG 16的SSD来构建的,主要是在Inception的基础上加入了dilated卷积层(dilated convolution),从而有效增大了感受野(receptive field)。整体上因为是基于SSD网络进行改进,所以检测数据还是比较快,同时精度也有一定的保证。

RFB介绍

RFB是一个类似Inception模块的多分支卷积模块,它的内部结构可分为两个组件:多分支卷积层和dilated卷积层。如下图:

1. 多分支卷积层

根据RF的定义,用多种尺寸的卷积核来实现比固定尺寸更好。

具体设计:

① 瓶颈结构,1x1-s2卷积减少通道特征,然后再加上一个nxn卷积。

② 替换5x5卷积为两个3x3卷积去减少参数,然后是更深的非线性层。有些例子,使用1xn和nx1来代替nxn卷积层;shortcut直连设计来自于ResNet 和Inception ResNet V2。

③ 为了输出,卷积经常有stride=2或者是减少通道,所以直连层用一个不带非线性激活的 1x1 卷积层。

2. Dilated 卷积层

设计灵感来自Deeplab,在保持参数量和同样感受野的情况下,用来获取更高分辨率的特征。下图展示两种RFB结构:RFB和RFB-s。每个分支都是一个正常卷积后面加一个dilated卷积,主要是尺寸和dilated因子不同。

(a)RFB。整体结构上借鉴了,Inception的思想,主要不同点在于引入3个dilated卷积层(比如3x3conv,rate=1),这也是RFBNet增大感受野的主要方式之一;

(b)RFB-s。RFB-s和RFB相比主要有两个改进,一方面用 3x3卷积代替 5x5 卷积,另一方面用 1x3 和 3x1卷积代替3x3卷积层,主要目的应该是为了减少计算量,类似Inception后期版本对Inception结构的改进。

RFBNet300的整体结构图如下所示,基本上和SSD类似。RFBNet和SSD不同的是:

1. 主干网络是用两个RFB结构替换原来新增的两层。

2. conv4_3 和 conv7_fc 在接预测层之前分别接 RFB-s 和RFB结构。

8.3.9 M2Det

M2Det有哪些创新点

1. 提出了多层次特征金字塔网络(MLFPN)来构建更有效的特征金字塔,用于检测不同尺度的对象。

M2Det的整体架构如下所示。M2DNet使用backbone和多级特征金字塔(MLFPN)从输入图像中提取特征,然后类似于SSD,根据学习的特征生成密集的边界框和类别分数,最后是非最大抑制(NMS)操作以产生最终结果。MLFPN由三个模块组成:特征融合模块(FFM),简化的U形模块(TUM)和按基于尺度的特征聚合模块(SFAM)。FFMv1通过融合骨干网络的特征图,将语义信息丰富为基本特征。每个TUM生成一组多尺度特征,然后交替连接的TUM和FFMv2提取多级多尺度特征。此外,SFAM通过按比例缩放的特征连接操作和自适应注意机制将特征聚合到多级特征金字塔中。下面介绍有关M2Det中三个核心模块和网络配置的更多详细信息。

FFMs

FFM融合了M2Det中不同层次的特征,这对于构建最终的多级特征金字塔至关重要。它们使用 1x1 卷积层来压缩输入特征的通道,并使用连接操作来聚合这些特征图。特别是,由于FFMv1以backbone中不同比例的两个特征图作为输入,因此它采用一个上采样操作,在连接操作之前将深度特征重新缩放到相同的尺度。同时,FFMv2采用基本特征和前一个TUM的最大输出特征图-这两个具有相同的比例-作为输入,并产生下一个TUM的融合特征。FFMv1和FFMv2的结构细节分别如下图(a)和(b)所示。

TUMs

TUM不同于FPN和RetinaNet,TUM采用简化的U形结构,如上图(c)所示。编码器是一系列3x3,步长为2的卷积层.并且解码器将这些层的输出作为其参考特征集,而原始FPN选择ResNet主干网络中每个阶段的最后一层的输出。此外,在解码器分支的上采样层后添加1x1卷积层和按元素求和的操作,以增强学习能力并保持特征的平滑性。每个TUM的解码器中的所有输出形成当前级别的多尺度特征。整体而言,堆叠TUM的输出形成多层次多尺度特征,而前TUM主要提供浅层特征,中间TUM提供中等特征,后TUM提供深层特征。

SFAM

SFAM旨在将由TUM生成的多级多尺度特征聚合成多级特征金字塔,如下图所示。SFAM的第一阶段是沿着信道维度将等效尺度的特征连接在一起。聚合特征金字塔可以表示为X = [X_1,X_2,...,X_i,...,X_L],其中

X_i=Concat(X_{xi},X_{2i},...,X_{Li})\in R^{W_i\times H_i \times C}

指的是尺度第i个最大的特征。这里,聚合金字塔中的每个比例都包含来自多级深度的特征。但是,简单的连接操作不太适合。在第二阶段,引入了通道注意模块,以促使特征集中在最有益的通道。在SE区块之后,使用全局平均池化来在挤压步骤中生成通道统计z∈RC。

这篇关于深度学习500问——Chapter08:目标检测(7)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959598

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”