【LLM 论文】UPRISE:使用 prompt retriever 检索 prompt 来让 LLM 实现 zero-shot 解决 task

本文主要是介绍【LLM 论文】UPRISE:使用 prompt retriever 检索 prompt 来让 LLM 实现 zero-shot 解决 task,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
⭐⭐⭐⭐
EMNLP 2023, Microsoft
Code:https://github.com/microsoft/LMOps

一、论文速读

这篇论文提出了 UPRISE,其思路是:训练一个 prompt retriever,面对一个 task 的 input 时,可以通过 prompt retriever 从 prompt pool 中检索到一个最合适的 prompt 作为 in-context learning 中的 exemplars,然后把这些 exemplars + task input 一起输入给 LLM,从而得到 answer。

下图是一个 case:(下半部分是 UPRISE 改进后的)

在这里插入图片描述

二、Prompt Retriever

2.1 Prompt Retriever 是什么

prompt retriever 是这篇论文的关键创新点,它的提出思路是这样的:以往 prompt engineering 方法中,使用 LLM 解决每一个 downstream task 都需要预先设定一个对应的 prompt。但也有可能为某个 task 设定的 prompt 也能够泛化到其他未见过的 task 上,于是,这篇论文的工作首先构建了一个 prompt pool,里面存储了很多用于解决 downstream tasks 的 prompts,然后当一个 test input 到来时,prompt retriever 可以从中检索出最适合这个 task 的 prompt,然后把 retrieved prompt + task input 输入给 LLM 来得到 answer。

论文的关键是训练出能够满足要求的 prompt retriever,并期待它面对没有见过的 task(prompt pool 中也没有这个 task 的 prompt),也可以检索出一个合适的 prompt 并让 LLM 来回复这个 input,这也就是论文提出的 Cross-task retrieval。另外也期待这个 prompt retriever 可以用于多个不同系列的 LLM,这也是论文提出的 Cross-model retrieval

2.2 Prompt Retriever 的训练和 inference

在这里插入图片描述

分别介绍 prompt retriever 的训练和推理思路。

retriever 的训练

这里会使用一个 frozen LLM 用于 prompt retriever 的监督微调。

对于一个 prompt-input 的 pair,会将其视为 positive pair,然后更换其中的 prompt 制作出一些 negative pairs,之后:

  • 把一个 pair 给 retriever,retriever 是一个 bi-encoder 模型,prompt encoder 和 input encoder 分别对 prompt 和 input 进行编码
  • 把一个 pair 和 negative pairs 给 frozen LLM,让其输出一个 task score 来评估 prompt 的有效性

对 positive pair 和 negative pairs 都循环上述过程,并使用对比学习来训练 prompt retriever,损失函数使用的 InfoNCE 这样的对比损失函数。

inference 阶段

预先使用 prompt encoder 对所有 prompt 进行编码,存入 prompt pool 中。

在 inference 时,对于 task input x t e s t x_{test} xtest,对其使用 input encoder 进行编码,然后从 prompt pool 中检索出最相似的 K 个 prompts 并降序排列: P + = ( p 1 , … , p K ) P^+ = (p_1, \dots, p_K) P+=(p1,,pK),然后把这个些 prompts 和 input 连接在一起,形成 p k ⊕ ⋯ ⊕ p 1 ⊕ x t e s t p_k \oplus \dots \oplus p_1 \oplus x_{test} pkp1xtest作为给 LLM 的输入。

同时神奇的是,在多个 downstream tasks 上训练出来的 retriever,能够很不错的应对未见过的任务,并从 prompt pool 选出相对来说比较合适的 prompts 来与 input 组装从而输入给 LLM 获得好的 answer。

三、总结

总的来说,这篇论文提出了一个很新颖的思路:prompt retriever,从而提高 LLM 的 zero-shot 的能力。

同时还研究了 prompt retriever 从训练的任务类型推广到其他未见过的任务类型,以及从小的 LLM 推广到更大规模的

这篇关于【LLM 论文】UPRISE:使用 prompt retriever 检索 prompt 来让 LLM 实现 zero-shot 解决 task的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959350

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M