代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:5.1—5.3放假。

本文目录

  • 491.递增子序列
    • 做题
    • 看文章
  • 46.全排列
    • 做题
    • 看文章
  • 47.全排列 II
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

491.递增子序列

代码随想录:491.递增子序列
Leetcode:491.递增子序列

做题

写了一会,但捋不出思路。可能是先找出局部最大递增序列,如何再回溯?

看文章

自己的思路有问题。首先,是在保存path时不能return,否则取不全。其次,在每层可以用set去重。看代码其实思路很简单,但就是逻辑需要梳理好。我自己理解的大概思路就是,以nums的每一个树都作为头结点,然后往下遍历,只要满足条件,加入path,就保存,否则就退出,进行下一个头结点的遍历。
还有一点:本题是求递增子序列!不是求连续递增子序列! 之前一直在想连续的事情,还是要看好题目要求!

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集# 注意这里不要加return,要取树上的节点uset = set()  # 使用集合对本层元素进行去重for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or nums[i] in uset:continueuset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

时间复杂度: O(n * 2^n)
空间复杂度: O(n)

前面是用set去重,这里考虑到题目条件:-100 <= nums[i] <= 100,可以用哈希表代替set做去重来优化。代码如下:

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集used = [0] * 201  # 使用数组来进行去重操作,题目说数值范围[-100, 100]for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:continue  # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素used[nums[i] + 100] = 1  # 标记当前元素已经使用过path.append(nums[i])  # 将当前元素加入当前递增子序列self.backtracking(nums, i + 1, path, result)path.pop()

46.全排列

代码随想录:46.全排列
Leetcode:46.全排列

做题

class Solution:def permute(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = set()self.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnfor i in range(self.size):if nums[i] not in used:used.add(nums[i])self.path.append(nums[i])self.backtracking(nums, used)self.path.pop()used.remove(nums[i])       

看文章

用数组代替set,可以降低空间复杂度为O(n)。
时间复杂度: O(n!)
空间复杂度: O(n)

47.全排列 II

代码随想录:47.全排列 II
Leetcode:47.全排列 II

做题

调了半小时之后AC了,使用used数组记录已经使用过的数,使用used_level集合记录一层内使用过的数。代码如下:

class Solution:def permuteUnique(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = [0] * self.sizeself.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnused_level = set()for i in range(self.size):if used[i] == 0 and nums[i] not in used_level:self.path.append(nums[i])used[i] = 1used_level.add(nums[i])self.backtracking(nums, used)used[i] = 0self.path.pop()

看文章

对于树层内去重,可以仍然使用used数组(数组内遍历为bool)。判断逻辑为:

if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continue

以[1, 1, 1, 2]为例:如果已经取了nums[0],此时used = [True, False, False, False],那么第2层可以取nums[1];如果没取nums[0],此时used = [False, False, False, False],那么第1层不能取nums[1],因为nums[1] == nums[0],而nums[0]已经是被append然后pop的。

完整代码如下:

class Solution:def permuteUnique(self, nums):nums.sort()  # 排序result = []self.backtracking(nums, [], [False] * len(nums), result)return resultdef backtracking(self, nums, path, used, result):if len(path) == len(nums):result.append(path[:])returnfor i in range(len(nums)):if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continueused[i] = Truepath.append(nums[i])self.backtracking(nums, path, used, result)path.pop()used[i] = False

时间复杂度: O(n! * n)。最差情况:所有元素都是唯一的,对于 n 个元素一共有 n! 中排列方案,而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
空间复杂度: O(n)

以往忽略的知识点小结

  • used数组的灵活应用:替代set;树层内去重
  • 出现“连续”字眼才需考虑“连续”

个人体会

完成时间:2h40min。
心得:看好题目要求;需要学会灵活使用used数组。

这篇关于代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959140

相关文章

算法的设计方式

1.贪心算法 贪心算法(又称贪婪算法)是指在对问题求解时,从问题的某一个初始解出发,总是做出在当前看来最好的选择,当达到某算法中的某一步不能再继续前进时,算法停止。这时,就得到了问题的一个解,但不能保证求得的最后解是最优的。也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题能产生整体最优解或者是整体最优解

冒泡算法及改进(属于交换排序)

冒泡排序(Bubble Sort)是一种交换排序,快速排序也属于一种交换排序。冒泡排序的基本思想是:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止。 假设一共共有 n 个数,则会进行 (n-1)趟比较,由1,2......n-1这么多趟,第一趟进行 (n-1)次比较,.......第n-1趟进行1次比较,故有公式:第i趟 +  第i趟的比较次数 = n       时间复杂度为

论文Android杂记录

fragment是3.0以后的东西,为了在低版本中使用fragment就要用到android-support-v4.jar兼容包,而fragmentActivity就是这个兼容包里面的,它提供了操作fragment的一些方法,其功能跟3.0及以后的版本的Activity的功能一样。 下面是API中的原话: FragmentActivity is a special activity provide

iOS 逆向常用代码片段

1、在导航条上添加按钮 UINavigationItem *navigatItem = [self performSelector:@selector(navigationItem)];UIBarButtonItem *rightBarButtonItem = [[UIBarButtonItem alloc]initWithTitle:@"群助手" style:UIBarButtonItemSt

Zen of Python -Python之禅

在浏览Python官方文档时无意发现了这个彩蛋,只需在终端中import this The Zen of Python, by Tim PetersBeautiful is better than ugly.Explicit is better than implicit.Simple is better than complex.Complex is better than compli

SpringBoot 代码规范

如何更规范化编写Java 代码 Many of the happiest people are those who own the least. But are we really so happy with our IPhones, our big houses, our fancy cars? 忘川如斯,拥有一切的人才更怕失去。 背景:如何更规范化编写Java 代码的重要性想必毋需多言,

Python内置函数oct()详解

Python中的oct()函数是一个内置函数,用于将一个整数转换成它的八进制字符串表示。 函数定义 oct()函数的基本语法如下: oct(x) x:一个整数。 函数返回x的八进制表示,以字符串形式。 基本用法 将整数转换为八进制 number = 64print(oct(number)) # 输出: '0o100' 转换负整数 number = -64print(o

Python筑基之旅-溯源及发展

目录 一、Python的起源 二、Python的版本更替及变化 三、Python的优缺点 四、Python的发展方向 五、Python之禅 六、推荐专栏/主页: 1、Python函数之旅:Functions 2、Python算法之旅:Algorithms 3、个人主页:https://myelsa1024.blog.csdn.net/ ​​​​​​​ 一、Python

算法day07

第一题 30. 串联所有单词的子串         上题题意如下:          将w数组里面的字符串随机排列,只要在s字符串中找到相对应的w组成的字符串,则返回s中对应字符串首位元素的第一个下标;                  有上述题意所知,解题思路如上一题故事,本题采用hash表和滑动窗口的模型;         首先对于words字符串数组进行处理: