代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:5.1—5.3放假。

本文目录

  • 491.递增子序列
    • 做题
    • 看文章
  • 46.全排列
    • 做题
    • 看文章
  • 47.全排列 II
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

491.递增子序列

代码随想录:491.递增子序列
Leetcode:491.递增子序列

做题

写了一会,但捋不出思路。可能是先找出局部最大递增序列,如何再回溯?

看文章

自己的思路有问题。首先,是在保存path时不能return,否则取不全。其次,在每层可以用set去重。看代码其实思路很简单,但就是逻辑需要梳理好。我自己理解的大概思路就是,以nums的每一个树都作为头结点,然后往下遍历,只要满足条件,加入path,就保存,否则就退出,进行下一个头结点的遍历。
还有一点:本题是求递增子序列!不是求连续递增子序列! 之前一直在想连续的事情,还是要看好题目要求!

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集# 注意这里不要加return,要取树上的节点uset = set()  # 使用集合对本层元素进行去重for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or nums[i] in uset:continueuset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

时间复杂度: O(n * 2^n)
空间复杂度: O(n)

前面是用set去重,这里考虑到题目条件:-100 <= nums[i] <= 100,可以用哈希表代替set做去重来优化。代码如下:

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集used = [0] * 201  # 使用数组来进行去重操作,题目说数值范围[-100, 100]for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:continue  # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素used[nums[i] + 100] = 1  # 标记当前元素已经使用过path.append(nums[i])  # 将当前元素加入当前递增子序列self.backtracking(nums, i + 1, path, result)path.pop()

46.全排列

代码随想录:46.全排列
Leetcode:46.全排列

做题

class Solution:def permute(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = set()self.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnfor i in range(self.size):if nums[i] not in used:used.add(nums[i])self.path.append(nums[i])self.backtracking(nums, used)self.path.pop()used.remove(nums[i])       

看文章

用数组代替set,可以降低空间复杂度为O(n)。
时间复杂度: O(n!)
空间复杂度: O(n)

47.全排列 II

代码随想录:47.全排列 II
Leetcode:47.全排列 II

做题

调了半小时之后AC了,使用used数组记录已经使用过的数,使用used_level集合记录一层内使用过的数。代码如下:

class Solution:def permuteUnique(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = [0] * self.sizeself.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnused_level = set()for i in range(self.size):if used[i] == 0 and nums[i] not in used_level:self.path.append(nums[i])used[i] = 1used_level.add(nums[i])self.backtracking(nums, used)used[i] = 0self.path.pop()

看文章

对于树层内去重,可以仍然使用used数组(数组内遍历为bool)。判断逻辑为:

if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continue

以[1, 1, 1, 2]为例:如果已经取了nums[0],此时used = [True, False, False, False],那么第2层可以取nums[1];如果没取nums[0],此时used = [False, False, False, False],那么第1层不能取nums[1],因为nums[1] == nums[0],而nums[0]已经是被append然后pop的。

完整代码如下:

class Solution:def permuteUnique(self, nums):nums.sort()  # 排序result = []self.backtracking(nums, [], [False] * len(nums), result)return resultdef backtracking(self, nums, path, used, result):if len(path) == len(nums):result.append(path[:])returnfor i in range(len(nums)):if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continueused[i] = Truepath.append(nums[i])self.backtracking(nums, path, used, result)path.pop()used[i] = False

时间复杂度: O(n! * n)。最差情况:所有元素都是唯一的,对于 n 个元素一共有 n! 中排列方案,而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
空间复杂度: O(n)

以往忽略的知识点小结

  • used数组的灵活应用:替代set;树层内去重
  • 出现“连续”字眼才需考虑“连续”

个人体会

完成时间:2h40min。
心得:看好题目要求;需要学会灵活使用used数组。

这篇关于代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/959140

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

java对接海康摄像头的完整步骤记录

《java对接海康摄像头的完整步骤记录》在Java中调用海康威视摄像头通常需要使用海康威视提供的SDK,下面这篇文章主要给大家介绍了关于java对接海康摄像头的完整步骤,文中通过代码介绍的非常详细,需... 目录一、开发环境准备二、实现Java调用设备接口(一)加载动态链接库(二)结构体、接口重定义1.类型

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化: