Redis---------实现商品秒杀业务,包括唯一ID,超卖问题,分布式锁

本文主要是介绍Redis---------实现商品秒杀业务,包括唯一ID,超卖问题,分布式锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 订单ID必须是唯一

59e1602b09834e0aadaa9602bbc8a20f.png

 唯一ID构成:

e0304f55e1f348838355b3126378a22d.png

代码生成唯一ID:


import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.time.format.DateTimeFormatter;//基于redis自增长的生成策略
@Component
public class RedisUUID {//起始时间时间秒数private static final long BEGIN_TIMESTAMP=1640995200L;//使用Redis自增策略private StringRedisTemplate stringRedisTemplate;public RedisUUID(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}//参数是业务的类型public long nextid(String keyType){//1,生成时间戳LocalDateTime now = LocalDateTime.now();long nowsecend = now.toEpochSecond(ZoneOffset.UTC);//当前时间的秒数减去起始时间的秒数得到时间戳long nowtime_stamp = nowsecend - BEGIN_TIMESTAMP;//2,生成序列号String nowdate = now.format(DateTimeFormatter.ofPattern("yyyy:mm:dd"));//使得每天都会生成新的一轮IDlong count = stringRedisTemplate.opsForValue().increment("icr:" + keyType + ":" + nowdate);//3,拼接返回return nowtime_stamp << 32 | count;}
}

827128d84da44b4793c030401783ed74.png

 

商品下单操作

业务逻辑:

7700ca73332d48708595361f1ae99dc3.jpg

 思路:主要是要了解以及掌握整个业务的流程:①先看商品是不是在秒杀的时间范围内②然后还要去看库存中是否还有该商品③如果有的话就扣减库存④然后就会生成订单,订单ID为唯一ID⑤把订单写入数据库中,再返回数据给前端

代码实现:

@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {@Autowiredprivate ISeckillVoucherService iSeckillVoucherService;@Autowiredprivate RedisUUID redisUUID;@Override@Transactionalpublic Result seckillVoucher(Long voucherId) {//1,查询商品的信息SeckillVoucher voucher = iSeckillVoucherService.getById(voucherId);//2,看是否在秒杀时间范围内if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {return Result.fail("尚未开始!");}if (voucher.getEndTime().isBefore(LocalDateTime.now())) {return Result.fail("已经结束啦!");}//3,再看库存是否还有if (voucher.getStock()<1) {return Result.fail("库存不足!");}//4,如果有就减扣库存boolean sucess = iSeckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).update();if (!sucess) {return Result.fail("库存不足!");}//5,然后就创建订单信息VoucherOrder voucherOrder = new VoucherOrder();//5.1,订单id----id生成器long order = redisUUID.nextid("order");voucherOrder.setVoucherId(order);//5.2,用户idLong id = UserHolder.getUser().getId();voucherOrder.setUserId(id);//5.3,商品idvoucherOrder.setVoucherId(voucherId);//6,保存进数据库save(voucherOrder);//7,返回数据return Result.ok(order);}
}

 

库存超卖问题

先看看什么是库存超卖问题:

正常情况:

ec6c0f2b42804805a77a24f6e75ce430.jpg

 但是涉及到高并发的时候一定会出问题:

b46184b741a443fdbfa8f540833db7cf.jpg

所以我们要想办法去解决这个问题,锁!!!

ee298fbbb6684e16bc4411dcc7c90c40.jpg

 悲观锁认为一定发生并发问题,所以每一次操作都会加锁,是线程串行进行,不会出现并发问题,但是这样的话就导致性能降低,所以我们使用乐观锁,乐观锁是先让你操作,等你要修改数据库的时候再判断与你查到的数据是否是一样,如果是一样的才可以修改,否则不可以减库存。

乐观锁的两种实现判断法:

第一种:版本号法,就是通过查询两次版本号来判断是否被修改过库存

ac6f979be91d4cba9c36fff6f96e61a8.jpg

第二种:CAS法,是在版本号法上做的改进方法,既然要判断两次版本是否相同,为啥不判断库存量是否相同呢,所以CSA法就是去判断前后两次查询到的库存量是否一样,如果一样就可以改

c859dfee73f44fd9844699936966ab0c.jpg

用乐观锁CAS法来解决超卖问题:

//4,如果有就减扣库存boolean sucess = iSeckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update();if (!sucess) {return Result.fail("库存不足!");}

但是这样任然还不能解决超卖问题,因为如果两个线程同时来查到100,线程1做完修改还剩99,线程2查到不是100就会不执行修改,这样也会有问题,所以又要进行改进策略

 //4,如果有就减扣库存boolean sucess = iSeckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).gt("stock",0).update();if (!sucess) {return Result.fail("库存不足!");}

一人一单问题

 使用悲观锁处理单体服务下的多线程问题:

@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {@Autowiredprivate ISeckillVoucherService iSeckillVoucherService;@Autowiredprivate RedisUUID redisUUID;@Overridepublic Result seckillVoucher(Long voucherId) {//1,查询商品的信息SeckillVoucher voucher = iSeckillVoucherService.getById(voucherId);//2,看是否在秒杀时间范围内if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {return Result.fail("尚未开始!");}if (voucher.getEndTime().isBefore(LocalDateTime.now())) {return Result.fail("已经结束啦!");}//3,再看库存是否还有if (voucher.getStock()<1) {return Result.fail("库存不足!");}//实现单体服务下的一人一单的多线程安全问题Long id = UserHolder.getUser().getId();//先获取锁,再提交事务,保证线程安全synchronized (id.toString().intern()){//获得Spring的代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);}}@Transactionalpublic Result createVoucherOrder(Long voucherId) {//一人一单问题Long id = UserHolder.getUser().getId();Integer count = query().eq("user_id", id).eq("voucher_id", voucherId).count();if(count > 0){return Result.fail("你已经购买过!");}//4,如果有就减扣库存boolean sucess = iSeckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).gt("stock",0).update();if (!sucess) {return Result.fail("库存不足!");}//5,然后就创建订单信息VoucherOrder voucherOrder = new VoucherOrder();//5.1,订单id----id生成器long order = redisUUID.nextid("order");voucherOrder.setVoucherId(order);//5.2,用户idvoucherOrder.setUserId(id);//5.3,商品idvoucherOrder.setVoucherId(voucherId);//6,保存进数据库save(voucherOrder);//7,返回数据return Result.ok(order);}
}

 添加依赖:

        <dependency><groupId>org.aspectj</groupId><artifactId>aspectjweaver</artifactId></dependency>

 在启动类上添加:

@EnableAspectJAutoProxy(exposeProxy = true)

分布式集群模式下的多线程问题:

当我们是处理分布式集群模式下,两个JVM不是共用一把锁,导致每个JVM都有自己的锁导致我们之前的锁锁不住,每个JVM都有一个线程会获得锁。

 

 分布式锁:满足分布式系统或者集群模式下多进程可见并且互斥的锁

 

 

 基于Redis实现分布式锁:

创建锁对象:
import org.springframework.data.redis.core.StringRedisTemplate;
import java.util.concurrent.TimeUnit;public class SimpleRedisLock implements ILock{private String name;private StringRedisTemplate stringRedisTemplate;private static final  String KEY_PREFXY="lock:";public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {this.name = name;this.stringRedisTemplate = stringRedisTemplate;}@Overridepublic boolean trylock(long timeoutSec) {//获取线程ID作为标识long ThreadId = Thread.currentThread().getId();//获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFXY + name, ThreadId + "", timeoutSec, TimeUnit.MINUTES);//避免空指针return Boolean.TRUE.equals(success);}@Overridepublic void unlock() {stringRedisTemplate.delete(KEY_PREFXY + name);}
}
代码实现Redis分布式锁的应用:

①先创建锁的对象,然后先是去获取锁②没有获取到锁就直接返回错误③获取到锁就可以进行对数据库的操作④操作完之后进行释放锁

Long id = UserHolder.getUser().getId();//创建锁对象SimpleRedisLock simpleRedisLock = new SimpleRedisLock("order" + id, stringRedisTemplate);//获取锁boolean trylock = simpleRedisLock.trylock(1200);//判断是否获得锁成功if (!trylock) {//获取锁失败return Result.fail("不允许重复下单!");}//获得Spring的代理对象(事务)try {IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);} finally {//释放锁simpleRedisLock.unlock();}

 但是就上面的处理还不够严谨,因为如果一个线程发生阻塞的话,其他线程可能会获得锁并且释放锁,导致锁误删问题,

解决锁误删问题:
import cn.hutool.core.lang.UUID;
import org.springframework.data.redis.core.StringRedisTemplate;
import java.util.concurrent.TimeUnit;public class SimpleRedisLock implements ILock{private String name;private StringRedisTemplate stringRedisTemplate;private static final  String KEY_PREFXY="lock:";//得到一个唯一锁的标识private static final  String ID_PREFXY= UUID.randomUUID(true)+"-";public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {this.name = name;this.stringRedisTemplate = stringRedisTemplate;}@Overridepublic boolean trylock(long timeoutSec) {//获取线程标识String ThreadId = ID_PREFXY+Thread.currentThread().getId();//获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFXY + name, ThreadId, timeoutSec, TimeUnit.MINUTES);//避免空指针return Boolean.TRUE.equals(success);}@Overridepublic void unlock() {//获取线程标识String ThreadId = ID_PREFXY+Thread.currentThread().getId();//判断要来修改的进程跟锁的标识是否一致String s = stringRedisTemplate.opsForValue().get(KEY_PREFXY + name);if(ThreadId.equals(s)){//释放锁stringRedisTemplate.delete(KEY_PREFXY + name);}}
}

这篇关于Redis---------实现商品秒杀业务,包括唯一ID,超卖问题,分布式锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958956

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时