vm内核参数之内存水位min_free_kbytes和保留内存lowmem_reserve_ratio

2024-05-04 08:32

本文主要是介绍vm内核参数之内存水位min_free_kbytes和保留内存lowmem_reserve_ratio,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文分析基于3.10.0-693.el7内核版本,即CentOS 7.4

1、zone内存水位值

系统内存的每个node上都有不同的zone,每个zone的内存都有对应的水位线,当内存使用达到某个阈值时就会触发相应动作,比如直接回收内存,或者启动kswap进行回收内存。我们可以通过查看/proc/zoneinfo来确认每个zone的min、low、high水位值。

[root@centos7 ~]# cat /proc/zoneinfo | grep -E "Node|min|low|high "
Node 0, zone      DMAmin      92low      115high     138
Node 0, zone    DMA32min      10839low      13548high     16258
Node 1, zone    DMA32min      5706low      7132high     8559
Node 1, zone   Normalmin      5890low      7362high     8835

而这些内存的水位值就由/proc/sys/vm/min_free_kbytes这个参数控制。

2、zone内存保留值

系统在分配内存时,有可能会出现跨zone分配内存的情况,比如,如果我们想要在zone的normal区域分配一个order为6大小的内存块,但是由于normal内存使用紧张,无法提供该大小的内存块,就会往下到DMA32的zone空间去分配。一两次没关系,如果每次都这么操作,那么DMA32的内存就会被耗光;等到某些应用程序需要该zone的内存时无法分配,特别对于某些只能使用特定zone内存的程序。因此对于跨zone使用内存需要控制,因此在考虑是否能进行跨zone分配时,需要参考该zone对应的lowmem_reserve内存。该值就由/proc/sys/vm/lowmem_reserve_ratio控制。

3、内核初始化zone内存水位线

内核在初始化阶段会调用init_per_zone_wmark_min来进行每个zone的内存水位线初始化,同时也会设置每个zone的lowmem_reserve值。

/** For small machines we want it small (128k min).  For large machines* we want it large (64MB max).  But it is not linear, because network* bandwidth does not increase linearly with machine size.  We use** 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:*	min_free_kbytes = sqrt(lowmem_kbytes * 16)*/
int __meminit init_per_zone_wmark_min(void)
{unsigned long lowmem_kbytes;int new_min_free_kbytes;//获取系统空闲内存值,扣除每个zone的high水位值后的总和lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);//根据上述公式计算new_min_free_kbytes值new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);if (new_min_free_kbytes > user_min_free_kbytes) {min_free_kbytes = new_min_free_kbytes;//最小128kif (min_free_kbytes < 128)min_free_kbytes = 128;//最大65M,但是这只是系统初始化的值,可以通过proc接口设置范围外的值if (min_free_kbytes > 65536)min_free_kbytes = 65536;} else {pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",new_min_free_kbytes, user_min_free_kbytes);}//设置每个zone的min low high水位值setup_per_zone_wmarks();refresh_zone_stat_thresholds();//设置每个zone为其他zone的保留内存setup_per_zone_lowmem_reserve();setup_per_zone_inactive_ratio();return 0;
}

系统初始化里min_free_kbytes的值介于128k~65M之间,但是通过proc接口设置就没这个限制,

int min_free_kbytes_sysctl_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos)
{int rc;rc = proc_dointvec_minmax(table, write, buffer, length, ppos);if (rc)return rc;if (write) {user_min_free_kbytes = min_free_kbytes;//直接根据用户的值设置min、low、high水位值setup_per_zone_wmarks();}return 0;
}

然后就是进入setup_per_zone_wmarks计算每个zone的min、low、high水位线,因为需要考虑多个zone,因此这个min_free_kbytes需要按比例分配给各个zone。

void setup_per_zone_wmarks(void)
{mutex_lock(&zonelists_mutex);__setup_per_zone_wmarks();mutex_unlock(&zonelists_mutex);
}static void __setup_per_zone_wmarks(void)
{unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);unsigned long lowmem_pages = 0;struct zone *zone;unsigned long flags;//统计非ZONE_HIGHMEM的内存总量for_each_zone(zone) {if (!is_highmem(zone))lowmem_pages += zone->managed_pages;}//针对每个zone设置min low high水位线for_each_zone(zone) {u64 tmp;spin_lock_irqsave(&zone->lock, flags);//以下两个语句就是按当前zone内存量占总的内存量的大小来分配min的水位值//因为所有zone的min水位相加才是真正的min_free_kbytestmp = (u64)pages_min * zone->managed_pages;do_div(tmp, lowmem_pages);//64位机器上不会有highmem区域,因此不考虑该情况if (is_highmem(zone)) {...} else {//设置min水位值zone->watermark[WMARK_MIN] = tmp;}//low水位值=5/4的min水位值zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);//high水位值=3/2的min水位值zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);__mod_zone_page_state(zone, NR_ALLOC_BATCH,high_wmark_pages(zone) -low_wmark_pages(zone) -zone_page_state(zone, NR_ALLOC_BATCH));setup_zone_migrate_reserve(zone);spin_unlock_irqrestore(&zone->lock, flags);}//更新totalreserve_pages的值calculate_totalreserve_pages();
}

所以总的来说,

  • watermark[WMARK_MIN] = min_free_kbytes/4*zone.pages/zone.allpages
  • watermark[WMARK_LOW] = 5/4*watermark[WMARK_MIN]
  • watermark[WMARK_HIGH] = 3/2*watermark[WMARK_MIN]

设置完内存水位线后,会更新totalreserve_pages的值,这个值用于评估系统正常运行时需要使用的内存,该值会作用于overcommit时,判断当前是否允许此次内存分配。

不过由于此时各个zone的lowmem_reserve值还未设置,因此这里我们先不分析,我们先看lowmem_reserve值是如何设置,毕竟totalreserve_pages的值会在设置lowmem_reserve后再次更新。

那么我们就进入setup_per_zone_lowmem_reserve,看看lowmem_reserve值是如何设置的,

/** setup_per_zone_lowmem_reserve - called whenever*	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone*	has a correct pages reserved value, so an adequate number of*	pages are left in the zone after a successful __alloc_pages().*/
static void setup_per_zone_lowmem_reserve(void)
{struct pglist_data *pgdat;enum zone_type j, idx;//遍历每个nodefor_each_online_pgdat(pgdat) {//遍历每个zone,假设系统上有ZONE_DMA,ZONE_DMA32,ZONE_NORMAL三个zone类型for (j = 0; j < MAX_NR_ZONES; j++) {struct zone *zone = pgdat->node_zones + j;unsigned long managed_pages = zone->managed_pages;//j=0,则zone[DMA].lowmem_reserve[DMA] = 0//j=1,则zone[DMA32].lowmem_reserve[DMA32] = 0//j=2,则zone[NORMAL].lowmem_reserve[NORMAL] = 0//这里的意思就是对于自身zone的内存使用,不需要考虑保留zone->lowmem_reserve[j] = 0;idx = j;while (idx) {struct zone *lower_zone;idx--;if (sysctl_lowmem_reserve_ratio[idx] < 1)sysctl_lowmem_reserve_ratio[idx] = 1;lower_zone = pgdat->node_zones + idx;//j=0,不会进入循环//j=1,idx=0,则zone[DMA].lowmem_reserve[DMA32] = zone[DMA32].pages/sysctl_lowmem_reserve_ratio[DMA]//j=2,idx=1,则zone[DMA32].lowmem_reserve[NORMAL] = zone[NORMAL].pages/sysctl_lowmem_reserve_ratio[DMA32]//    idx=0,则zone[DMA].lowmem_reserve[NORMAL] = zone[NORMAL+DMA32].pages/sysctl_lowmem_reserve_ratio[DMA]  lower_zone->lowmem_reserve[j] = managed_pages /sysctl_lowmem_reserve_ratio[idx];managed_pages += lower_zone->managed_pages;}}}//再次更新totalreserve_pages的值calculate_totalreserve_pages();
}

由于内存分配只可能向下分配,不可能向上分配,即需要DMA的内存不可能到DMA32或者NORMAL上分配,
同理需要DMA32的内存也不可能到NORMAL上分配,因此不存在zone[DMA32].lowmem_reserve[DMA],
也不存在zone[NORMAL].lowmem_reserve[DMA]和zone[NORMAL].lowmem_reserve[DMA32],

整理该过程,我们有以下计算方式,

zone[DMA].lowmem_reserve[DMA] = 0
zone[DMA].lowmem_reserve[DMA32] = zone[DMA32].pages/sysctl_lowmem_reserve_ratio[DMA]
zone[DMA].lowmem_reserve[NORMAL] = zone[NORMAL+DMA32].pages/sysctl_lowmem_reserve_ratio[DMA] zone[DMA32].lowmem_reserve[DMA32] = 0
zone[DMA32].lowmem_reserve[NORMAL] = zone[NORMAL].pages/sysctl_lowmem_reserve_ratio[DMA32]zone[NORMAL].lowmem_reserve[NORMAL] = 0

总的来说就是为了避免跨zone分配内存将下级zone内存耗光的情况。

设置lowmem_reserve后就会再次更新totalreserve_pages的值,

/** calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio*	or min_free_kbytes changes.*/
static void calculate_totalreserve_pages(void)
{struct pglist_data *pgdat;unsigned long reserve_pages = 0;enum zone_type i, j;//遍历每个nodefor_each_online_pgdat(pgdat) {//遍历每个zonefor (i = 0; i < MAX_NR_ZONES; i++) {struct zone *zone = pgdat->node_zones + i;unsigned long max = 0;/* Find valid and maximum lowmem_reserve in the zone *///查找当前zone中,为上级zone内存类型最大的保留值for (j = i; j < MAX_NR_ZONES; j++) {if (zone->lowmem_reserve[j] > max)max = zone->lowmem_reserve[j];}/* we treat the high watermark as reserved pages. *///每个zone的high水位值和最大保留值之和当做是系统运行保留阈值max += high_wmark_pages(zone);if (max > zone->managed_pages)max = zone->managed_pages;reserve_pages += max;/** Lowmem reserves are not available to* GFP_HIGHUSER page cache allocations and* kswapd tries to balance zones to their high* watermark.  As a result, neither should be* regarded as dirtyable memory, to prevent a* situation where reclaim has to clean pages* in order to balance the zones.*/zone->dirty_balance_reserve = max;}}dirty_balance_reserve = reserve_pages;//这个totalreserve_pages在overcommit时会使用到//该值作为系统正常运行的最低保证totalreserve_pages = reserve_pages;
}

4、系统验证

通过代码分析后我们了解了内存的min、low、high水位线,以及每个zone的lowmem_reserve,下面我们就来验证下系统上这些值是否符合我们的分析。

首先是min、low、high水位线和min_free_kbytes,我们以min值为例,

[root@centos7 ~]# echo 90112 > /proc/sys/vm/min_free_kbytes
[root@centos7 ~]# cat /proc/sys/vm/min_free_kbytes
90112
[root@centos7 ~]# cat /proc/zoneinfo | grep -E "Node|managed|min"
Node 0, zone      DMAmin      92managed  3977
Node 0, zone    DMA32min      10844managed  467178
Node 1, zone    DMA32min      5703managed  245716
Node 1, zone   Normalmin      5887managed  253642

由此有,

Node[0].DMA.min=3977/4*90112/(3977+467178+245716+253642)=92
Node[0].DMA32.min=467178/4*90112/(3977+467178+245716+253642)=10844
Node[1].DMA32.min=90112/4*245716/(3977+467178+245716+253642)=5703
Node[1].Normal.min=90112/4*253642/(3977+467178+245716+253642)=5887

可见是符合我们的分析。

然后是lowmem_reserve,

[root@centos7 ~]# cat /proc/zoneinfo | grep -E "Node|managed|protection"
Node 0, zone      DMAmanaged  3977protection: (0, 1824, 1824, 1824)
Node 0, zone    DMA32managed  467178protection: (0, 0, 0, 0)
Node 1, zone    DMA32managed  245716protection: (0, 0, 990, 990)
Node 1, zone   Normalmanaged  253642protection: (0, 0, 0, 0)
[root@centos7 ~]# cat /proc/sys/vm/lowmem_reserve_ratio 
256	256	32

这里的计算是要区分node的,由于系统上没有MOVEABLE的zone,我们就不计算这个zone的相关参数,由此有,

Node[0].zone[DMA].lowmem_reserve[DMA] = 0
Node[0].zone[DMA].lowmem_reserve[DMA32] = Node[0].zone[DMA32].pages/sysctl_lowmem_reserve_ratio[DMA] = 467178/256 = 1824
Node[0].zone[DMA].lowmem_reserve[NORMAL] = Node[0].zone[NORMAL+DMA32].pages/sysctl_lowmem_reserve_ratio[DMA] = 467178/256 = 1824Node[0].zone[DMA32].lowmem_reserve[DMA] = 0
Node[0].zone[DMA32].lowmem_reserve[DMA32] = 0
Node[0].zone[DMA32].lowmem_reserve[NORMAL] = Node[0].zone[NORMAL].pages/sysctl_lowmem_reserve_ratio[DMA32] = 0/256 = 0Node[1].zone[DMA32].lowmem_reserve[DMA] = 0
Node[1].zone[DMA32].lowmem_reserve[DMA32] = 0
Node[1].zone[DMA32].lowmem_reserve[NORMAL] = Node[1].zone[NORMAL].pages/sysctl_lowmem_reserve_ratio[DMA32] = 253642/256 = 990

由此可见,确实符合我们的分析。

这篇关于vm内核参数之内存水位min_free_kbytes和保留内存lowmem_reserve_ratio的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958771

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件