【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架

本文主要是介绍【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀Write In Front🚀
📝个人主页:令夏二十三
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:深度学习
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

文章目录

目录

文章目录

2.1 优化算法分类

2.2 超参数调试和BN及框架


2.1 优化算法分类

深度学习中的优化算法主要包括以下几种:

  1. 批量梯度下降(Batch Gradient Descent):这种方法涉及对整个训练数据集进行一次完整的遍历来计算梯度。然而,随着数据集的增大,这种方法的计算量也会增加。

  2. 小批量梯度下降(Mini-batch Gradient Descent):为了解决批量梯度下降的计算量问题,可以将数据集划分为多个较小的批次(mini-batches),并使用每个批次来计算梯度。这种方法既减少了计算量,又避免了随机梯度下降的噪声。

  3. 动量梯度下降(Momentum Gradient Descent):这种方法通过引入动量概念来加速学习过程。它考虑了之前的梯度信息,从而减少了学习过程中的震荡。

  4. RMSprop:这种方法在动量梯度下降的基础上,还考虑了梯度的平方,这有助于确定学习率,特别是在数据分布不均匀的情况下。

  5. Adam优化算法:这是一种自适应学习率的方法,结合了动量梯度下降和RMSprop的特点,能够更有效地处理非平稳目标函数。

这些优化算法在深度学习中起着关键作用,它们帮助模型更快地收敛并提高其性能。选择合适的优化算法取决于具体问题的性质和数据的特点。

除了这些梯度下降算法层面的优化,还有一些其他的优化手段,比如随着 epoch 的增大逐渐衰减学习率:(这里用t代表当前训练的迭代次数下标)

 它们主要可以改善 mini-batch 带来的训练末期参数反复震荡的问题,不过就是会导致超参数的增加。

2.2 超参数调试和BN及框架

在深度学习中,超参数调试是指调整模型中的超参数以优化模型性能的过程。这些超参数包括学习率、批量大小、隐藏层神经元数量、网络层数等。通过实验和观察,研究人员可以找到最佳的超参数设置,以提高模型的准确性和泛化能力。

下面按照重要程度对神经网络中的一些超参数进行排序:

  1. 学习率α
  2. mini-batch大小
  3. 隐藏层神经元数量
  4. 动量梯度下降法滤波系数β
  5. 隐藏层个数
  6. 学习率衰减系数
  7. Adam优化方法参数

批量归一化(Batch Normalization, BN)是一种深度学习技术,用于加速训练过程并减少过拟合的风险。BN通过对每个小批量数据在激活函数之前进行归一化处理,使得每层输入的分布更加稳定,从而有助于解决内部协变量偏移问题,提高模型的泛化能力。

批量归一化(Batch Normalization,简称BN)是深度学习中一种用于提高训练速度和稳定性的技术。它的主要作用是对神经网络的每一层的输入数据进行归一化处理,即使得这些数据的分布保持一致。这样做有几个好处:

  1. 加速学习过程:通过归一化,可以允许使用更高的学习率,而不担心数值问题,从而加速模型的收敛速度。

  2. 减少过拟合:BN通过减少内部协变量偏移(Internal Covariate Shift)现象,即每层输入分布的变化,有助于模型更好地泛化。

  3. 减少对初始化的依赖:在没有BN的情况下,网络中每一层的输入分布会随着前面层参数的更新而变化,这要求对网络进行细致的初始化。BN减轻了这一需求。

批量归一化的具体步骤如下:

  1. 计算批均值和批方差:对每个特征在小批量数据上进行平均和方差的计算。

  2. 归一化:对每个特征进行归一化处理,使其具有均值为0和方差为1的分布。这通常通过减去均值并除以方差的平方根来实现。

  3. 缩放和平移:引入两个可学习的参数——缩放因子(γ)和平移因子(β),对归一化后的数据进行缩放和平移,以恢复网络的表示能力。

  4. 应用激活函数:在归一化、缩放和平移之后,对数据进行非线性激活。

批量归一化的关键在于它是在每个小批量(mini-batch)上进行的,而不是在整个数据集上。这使得归一化过程可以随数据的流动而动态调整,而不是固定不变。

BN在深度学习模型中广泛应用,尤其是在卷积神经网络(CNN)和前馈神经网络中,它有助于模型的训练效率和性能提升。然而,值得注意的是,BN在某些情况下可能不是最佳选择,例如在循环神经网络(RNN)中,或者在数据批量非常小的情况下,BN的效果可能不佳。

这篇关于【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958156

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java服务实现开启Debug远程调试

《Java服务实现开启Debug远程调试》文章介绍如何通过JVM参数开启Java服务远程调试,便于在线上排查问题,在IDEA中配置客户端连接,实现无需频繁部署的调试,提升效率... 目录一、背景二、相关图示说明三、具体操作步骤1、服务端配置2、客户端配置总结一、背景日常项目中,通常我们的代码都是部署到远程

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分