mapreduce中实现对hbase中表数据的添加

2024-05-03 23:38

本文主要是介绍mapreduce中实现对hbase中表数据的添加,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html

       根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解。

       实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中。代码如下:

       首先是Mapper:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class THMapper extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context){
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
System.out.println("key:"+k+","+"value:"+v);
try {

context.write(new Text(k), new Text(v));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Reduce:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;

public class THReducer extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> value,Context context){
String k = key.toString();
String v = value.iterator().next().toString(); //由数据知道value就只有一行
Put putrow = new Put(k.getBytes());
putrow.add("f1".getBytes(), "qualifier".getBytes(), v.getBytes());
try {

context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Driver:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;

public class THDriver extends Configured implements Tool{

@Override
public int run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost"); //千万别忘记配置

Job job = new Job(conf,"Txt-to-Hbase");
job.setJarByClass(TxtHbase.class);

Path in = new Path("/home/daisy/inout/txthbase/");

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);

job.setMapperClass(THMapper.class);
job.setReducerClass(THReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job);

job.waitForCompletion(true);
return 0;
}

}
复制代码
复制代码

  最后是主类:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;

public class TxtHbase {
public static void main(String [] args) throws Exception{
int mr;
mr = ToolRunner.run(new Configuration(),new THDriver(),args);
System.exit(mr);
}
}
复制代码
复制代码


  输入文件是3个txt文件,每个txt中的文件内容均是如下格式:

复制代码
1 name1--txt1-www.javabloger.com

2 name2--txt1

3 name3--txt1

4 name4--txt1

5 name5--txt1
复制代码

  通过以上代码,mapreduce实现之后,在hbase的shell中查看tab1表,如下:

复制代码
复制代码
hbase(main):009:0> scan 'tab1'
ROW COLUMN+CELL
1 column=f1:qualifier, timestamp=1320235555118, value=name1--txt1-www.javabloger.com
10 column=f1:qualifier, timestamp=1320235555118, value=name10--txt2
11 column=f1:qualifier, timestamp=1320235555118, value=name11--txt3-www.javabloger.com
12 column=f1:qualifier, timestamp=1320235555118, value=name12--txt3
13 column=f1:qualifier, timestamp=1320235555118, value=name13--txt3
14 column=f1:qualifier, timestamp=1320235555118, value=name14--txt3
15 column=f1:qualifier, timestamp=1320235555118, value=name15--txt3
2 column=f1:qualifier, timestamp=1320235555118, value=name2--txt1
3 column=f1:qualifier, timestamp=1320235555118, value=name3--txt1
4 column=f1:qualifier, timestamp=1320235555118, value=name4--txt1
5 column=f1:qualifier, timestamp=1320235555118, value=name5--txt1
6 column=f1:qualifier, timestamp=1320235555118, value=name6--txt2-www.javabloger.com
7 column=f1:qualifier, timestamp=1320235555118, value=name7--txt2
8 column=f1:qualifier, timestamp=1320235555118, value=name8--txt2
9 column=f1:qualifier, timestamp=1320235555118, value=name9--txt2
15 row(s) in 0.0570 seconds
复制代码
复制代码

  Map跟普通的mapreduce函数没有多大区别,正常的TextInputFormat方式输入,按行读取。

       Reduce中要把处理之后的结果写入hbase的表中,所以与普通的mapreduce程序有些区别,由以上代码可以知道,reduce类继承的是TableReducer,通过查询API(如下图1)知道,它也是一种基本的Reducer类,与其他的reduce类一样,它的输入k/v对是对应Map的输出k/v对,它的输出key可以是任意的类型,但是value必须是一个put或delete实例。

                                                                        图1:TableReducer类详解  

  Reduce的输出key是ImmutableWritable类型(org.apache.hadoop.hase.io),API中的解释,它是一个可以用作key或value类型的字节序列,该类型基于BytesWritable,不能调整大小。Reduce的输出value是一个put。如上面代码:   context.write(new ImmutableBytesWritable(key.getBytes())putrow);

       Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行reduce类。

       TableMapReduceUtil类(org.apache.hadoop.hbase.mapreduce):a utility for TableMapper or TableReducer。因为本例子中的reduce继承的是TableReducer,所以也就解释了用TableMapReduceUtil来执行的原因。该类的方法有:addDependencyJars(),initTableMapperJob(),initTableReducerJob(),limitNumReduceTasks(),setNumReduceTasks()等,详细包括参数等可以查看API。

       同时注意本程序代码的格式,将Map,Reduce,以及Job的配置分离,比较清晰。之前写代码喜欢把map,reduce 以及job配置全都写在一个类中,可能这是一种不太好的习惯。这里注意Driver类,要继承 Configured 类和实现 Tool 接口,以及实现Tool中的run方法,在run方法中对job进行配置。 同时main函数中用ToolRunner.run() 方法来调用Driver类。

       本人的一点理解,如有错误,欢迎指正,也欢迎大家一起交流mapreduce编程的知识,我的email:dongtingting8877@163.com  。


这篇关于mapreduce中实现对hbase中表数据的添加的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957904

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义