mapreduce中实现对hbase中表数据的添加

2024-05-03 23:38

本文主要是介绍mapreduce中实现对hbase中表数据的添加,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html

       根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解。

       实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中。代码如下:

       首先是Mapper:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class THMapper extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context){
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
System.out.println("key:"+k+","+"value:"+v);
try {

context.write(new Text(k), new Text(v));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Reduce:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;

public class THReducer extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> value,Context context){
String k = key.toString();
String v = value.iterator().next().toString(); //由数据知道value就只有一行
Put putrow = new Put(k.getBytes());
putrow.add("f1".getBytes(), "qualifier".getBytes(), v.getBytes());
try {

context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Driver:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;

public class THDriver extends Configured implements Tool{

@Override
public int run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost"); //千万别忘记配置

Job job = new Job(conf,"Txt-to-Hbase");
job.setJarByClass(TxtHbase.class);

Path in = new Path("/home/daisy/inout/txthbase/");

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);

job.setMapperClass(THMapper.class);
job.setReducerClass(THReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job);

job.waitForCompletion(true);
return 0;
}

}
复制代码
复制代码

  最后是主类:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;

public class TxtHbase {
public static void main(String [] args) throws Exception{
int mr;
mr = ToolRunner.run(new Configuration(),new THDriver(),args);
System.exit(mr);
}
}
复制代码
复制代码


  输入文件是3个txt文件,每个txt中的文件内容均是如下格式:

复制代码
1 name1--txt1-www.javabloger.com

2 name2--txt1

3 name3--txt1

4 name4--txt1

5 name5--txt1
复制代码

  通过以上代码,mapreduce实现之后,在hbase的shell中查看tab1表,如下:

复制代码
复制代码
hbase(main):009:0> scan 'tab1'
ROW COLUMN+CELL
1 column=f1:qualifier, timestamp=1320235555118, value=name1--txt1-www.javabloger.com
10 column=f1:qualifier, timestamp=1320235555118, value=name10--txt2
11 column=f1:qualifier, timestamp=1320235555118, value=name11--txt3-www.javabloger.com
12 column=f1:qualifier, timestamp=1320235555118, value=name12--txt3
13 column=f1:qualifier, timestamp=1320235555118, value=name13--txt3
14 column=f1:qualifier, timestamp=1320235555118, value=name14--txt3
15 column=f1:qualifier, timestamp=1320235555118, value=name15--txt3
2 column=f1:qualifier, timestamp=1320235555118, value=name2--txt1
3 column=f1:qualifier, timestamp=1320235555118, value=name3--txt1
4 column=f1:qualifier, timestamp=1320235555118, value=name4--txt1
5 column=f1:qualifier, timestamp=1320235555118, value=name5--txt1
6 column=f1:qualifier, timestamp=1320235555118, value=name6--txt2-www.javabloger.com
7 column=f1:qualifier, timestamp=1320235555118, value=name7--txt2
8 column=f1:qualifier, timestamp=1320235555118, value=name8--txt2
9 column=f1:qualifier, timestamp=1320235555118, value=name9--txt2
15 row(s) in 0.0570 seconds
复制代码
复制代码

  Map跟普通的mapreduce函数没有多大区别,正常的TextInputFormat方式输入,按行读取。

       Reduce中要把处理之后的结果写入hbase的表中,所以与普通的mapreduce程序有些区别,由以上代码可以知道,reduce类继承的是TableReducer,通过查询API(如下图1)知道,它也是一种基本的Reducer类,与其他的reduce类一样,它的输入k/v对是对应Map的输出k/v对,它的输出key可以是任意的类型,但是value必须是一个put或delete实例。

                                                                        图1:TableReducer类详解  

  Reduce的输出key是ImmutableWritable类型(org.apache.hadoop.hase.io),API中的解释,它是一个可以用作key或value类型的字节序列,该类型基于BytesWritable,不能调整大小。Reduce的输出value是一个put。如上面代码:   context.write(new ImmutableBytesWritable(key.getBytes())putrow);

       Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行reduce类。

       TableMapReduceUtil类(org.apache.hadoop.hbase.mapreduce):a utility for TableMapper or TableReducer。因为本例子中的reduce继承的是TableReducer,所以也就解释了用TableMapReduceUtil来执行的原因。该类的方法有:addDependencyJars(),initTableMapperJob(),initTableReducerJob(),limitNumReduceTasks(),setNumReduceTasks()等,详细包括参数等可以查看API。

       同时注意本程序代码的格式,将Map,Reduce,以及Job的配置分离,比较清晰。之前写代码喜欢把map,reduce 以及job配置全都写在一个类中,可能这是一种不太好的习惯。这里注意Driver类,要继承 Configured 类和实现 Tool 接口,以及实现Tool中的run方法,在run方法中对job进行配置。 同时main函数中用ToolRunner.run() 方法来调用Driver类。

       本人的一点理解,如有错误,欢迎指正,也欢迎大家一起交流mapreduce编程的知识,我的email:dongtingting8877@163.com  。


这篇关于mapreduce中实现对hbase中表数据的添加的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957904

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买