mapreduce中实现对hbase中表数据的添加

2024-05-03 23:38

本文主要是介绍mapreduce中实现对hbase中表数据的添加,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html

       根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解。

       实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中。代码如下:

       首先是Mapper:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class THMapper extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context){
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
System.out.println("key:"+k+","+"value:"+v);
try {

context.write(new Text(k), new Text(v));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Reduce:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;

public class THReducer extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> value,Context context){
String k = key.toString();
String v = value.iterator().next().toString(); //由数据知道value就只有一行
Put putrow = new Put(k.getBytes());
putrow.add("f1".getBytes(), "qualifier".getBytes(), v.getBytes());
try {

context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Driver:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;

public class THDriver extends Configured implements Tool{

@Override
public int run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost"); //千万别忘记配置

Job job = new Job(conf,"Txt-to-Hbase");
job.setJarByClass(TxtHbase.class);

Path in = new Path("/home/daisy/inout/txthbase/");

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);

job.setMapperClass(THMapper.class);
job.setReducerClass(THReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job);

job.waitForCompletion(true);
return 0;
}

}
复制代码
复制代码

  最后是主类:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;

public class TxtHbase {
public static void main(String [] args) throws Exception{
int mr;
mr = ToolRunner.run(new Configuration(),new THDriver(),args);
System.exit(mr);
}
}
复制代码
复制代码


  输入文件是3个txt文件,每个txt中的文件内容均是如下格式:

复制代码
1 name1--txt1-www.javabloger.com

2 name2--txt1

3 name3--txt1

4 name4--txt1

5 name5--txt1
复制代码

  通过以上代码,mapreduce实现之后,在hbase的shell中查看tab1表,如下:

复制代码
复制代码
hbase(main):009:0> scan 'tab1'
ROW COLUMN+CELL
1 column=f1:qualifier, timestamp=1320235555118, value=name1--txt1-www.javabloger.com
10 column=f1:qualifier, timestamp=1320235555118, value=name10--txt2
11 column=f1:qualifier, timestamp=1320235555118, value=name11--txt3-www.javabloger.com
12 column=f1:qualifier, timestamp=1320235555118, value=name12--txt3
13 column=f1:qualifier, timestamp=1320235555118, value=name13--txt3
14 column=f1:qualifier, timestamp=1320235555118, value=name14--txt3
15 column=f1:qualifier, timestamp=1320235555118, value=name15--txt3
2 column=f1:qualifier, timestamp=1320235555118, value=name2--txt1
3 column=f1:qualifier, timestamp=1320235555118, value=name3--txt1
4 column=f1:qualifier, timestamp=1320235555118, value=name4--txt1
5 column=f1:qualifier, timestamp=1320235555118, value=name5--txt1
6 column=f1:qualifier, timestamp=1320235555118, value=name6--txt2-www.javabloger.com
7 column=f1:qualifier, timestamp=1320235555118, value=name7--txt2
8 column=f1:qualifier, timestamp=1320235555118, value=name8--txt2
9 column=f1:qualifier, timestamp=1320235555118, value=name9--txt2
15 row(s) in 0.0570 seconds
复制代码
复制代码

  Map跟普通的mapreduce函数没有多大区别,正常的TextInputFormat方式输入,按行读取。

       Reduce中要把处理之后的结果写入hbase的表中,所以与普通的mapreduce程序有些区别,由以上代码可以知道,reduce类继承的是TableReducer,通过查询API(如下图1)知道,它也是一种基本的Reducer类,与其他的reduce类一样,它的输入k/v对是对应Map的输出k/v对,它的输出key可以是任意的类型,但是value必须是一个put或delete实例。

                                                                        图1:TableReducer类详解  

  Reduce的输出key是ImmutableWritable类型(org.apache.hadoop.hase.io),API中的解释,它是一个可以用作key或value类型的字节序列,该类型基于BytesWritable,不能调整大小。Reduce的输出value是一个put。如上面代码:   context.write(new ImmutableBytesWritable(key.getBytes())putrow);

       Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行reduce类。

       TableMapReduceUtil类(org.apache.hadoop.hbase.mapreduce):a utility for TableMapper or TableReducer。因为本例子中的reduce继承的是TableReducer,所以也就解释了用TableMapReduceUtil来执行的原因。该类的方法有:addDependencyJars(),initTableMapperJob(),initTableReducerJob(),limitNumReduceTasks(),setNumReduceTasks()等,详细包括参数等可以查看API。

       同时注意本程序代码的格式,将Map,Reduce,以及Job的配置分离,比较清晰。之前写代码喜欢把map,reduce 以及job配置全都写在一个类中,可能这是一种不太好的习惯。这里注意Driver类,要继承 Configured 类和实现 Tool 接口,以及实现Tool中的run方法,在run方法中对job进行配置。 同时main函数中用ToolRunner.run() 方法来调用Driver类。

       本人的一点理解,如有错误,欢迎指正,也欢迎大家一起交流mapreduce编程的知识,我的email:dongtingting8877@163.com  。


这篇关于mapreduce中实现对hbase中表数据的添加的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957904

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri