Baby_Step,Gaint_Step(分析详解+模板)

2024-05-03 19:18

本文主要是介绍Baby_Step,Gaint_Step(分析详解+模板),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  以下是总结自他人博客资料,以及本人自己的学习经验。


【Baby_Step,Gaint_Step定义】

高次同余方程。   BL == N (mod P)

求解最小的L。由于数据范围很大,暴力不行

这里用到baby_step,giant_step算法。意为先小步,后大步。

令L=i*m+j  (m=ceil(sqrt(p-1))),

那么原式化为 B^(i*m)*B^j==N(MOD P)————》B^j===N*B^(-i*m)(MOD P)

我们先预处理B^0,B^1,B^2……B^(m-1),存入HASH表。,这一步就是baby-step,每次移动1

然后求出B^-m,枚举i,如果存在B^(-i*m)存在于HASH表中,说明存在解L=i*m+j    ,这一步为giant_step,每次移动m

至于B^(-m)的求法,可以先求出B的逆元,也就是B^-1。

注意以上解法是最基本的,只能对于gcd(B,P)==1


【解体思路】

我们可以做一个等价
x = i * m + j  ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )
而这么分解的目的无非是为了转化为:
(A^i)^m * A^j = B ( mod C)

之后做少许暴力的工作就可以解决问题:
(1) for i = 0 -> m, 插入Hash (i, A^i mod C)
(2) 枚举 i ,对于每一个枚举到的i,令  AA = (A^m)^i mod C
我们有
AA * A^j = B (mod C)
显然AA,B,C均已知,而由于C为素数,那么(AA,C)无条件为1
于是对于这个模方程解的个数唯一(可以利用扩展欧几里得或 欧拉定理来求解)
那么对于得到的唯一解X,在Hash表中寻找,如果找到,则返回 i * m + j
注意:
由于i从小到大的枚举,而Hash表中存在的j必然是对于某个剩余系内的元素X 是最小的(就是指标)
所以显然此时就可以得到最小解


如果需要得到 x > 0的解,那么只需要在上面的步骤中判断 当 i * m + j > 0 的时候才返回

到目前为止,以上的算法都不存在争议,大家实现的代码均相差不大。可见当C为素数的时候,此类离散对数的问题可以变得十分容易实现。


【模板】

poj 2417

/*    NYIST_ZSJ【普通版】Baby_Step,Gaint_Step形式:A^x = B(mod C)使用条件:1、在数据范围很大,无法暴力的情况下2、C必定为素数返回结果:如果有解,则一定返回的最小解。
*///快速幂求a^b//a^b%n
LL pow_mod(LL a,LL b,LL n){     LL res = 1;while(b){if(b&1)res = (res*a)%n;a = (a*a)%n;b = b >> 1;}return res;
}//求解模方程a^x = b(mod n),n为素数 ,无解返回-1
//费马小定理a^(n-1) = 1(mod n),n为素数.a^0 = 1,所以循环节小于等于n,即如果存在解,则最小解x <= n//a^x = b(mod n)
LL BSGS(LL a,LL b,LL n){             LL m,v,e = 1;m = ceil(sqrt(n+0.5));           //x = i*m + j            //v = inv(pow_mod(a,m,n),n)       //a^m*v = 1(mod n)v = pow_mod(a,n-m-1,n);           //v = a^-mmap<LL,LL> x;x[1] = m;for(int i = 1;i < m;++i){           //先一步(Baby_Step),建立哈希表,保存x^0,x^1,.....x^m-1e = (e*a)%n;if(!x[e])x[e] = i;}for(int i = 0;i < m;++i){           //在每次m次方加(Gaint_Step),遍历所有1<=x<=nif(x[b]){LL num = x[b];x.clear();                    //清空return i*m + (num == m?0:num);}//判断a^j =? b*a^(-m*i)%n,是否存在于哈希表中,如果存在着说明a^(i*m+j) = b(mod c)成立b = (b*v)%n;                        //b = b/(a^m)}return -1;                             //无解
}


【总结】

  上面算法总的时间复杂度接近于O(sqrt(C)*log(C)) (C是模)


主要参考资料:冷月之殇【模板】、ACM_cxlove【定义】、AekdyCoin【思路】




这篇关于Baby_Step,Gaint_Step(分析详解+模板)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957455

相关文章

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF