代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

本文主要是介绍代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 300.最长递增子序列
    • 思路
    • CPP代码
  • 674.最长连续递增序列
    • 思路
    • CPP代码
  • 718.最长重复子数组
    • 思路
    • CPP代码

300.最长递增子序列

力扣题目链接

文章讲解:300.最长递增子序列

视频链接:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列

可以删除或不删除某些元素,保证数组原有的顺序,然后求最长的递增子序列。

这是典型的子序列系列,也是卡哥安排的第一个动规子序列问题。

思路

  • dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

  • 递推公式

如果j < i ,并且有nums[j] < nums[i],其中,以nums[j]结尾的最长递增子序列长度为dp[j]。以nums[i]结尾的最长递增子序列长度为dp[i]

我们应该有dp[i]=dp[j] + 1,再者,我们会遍历每一个小于i的下标j(也就是说我们会固定i,去遍历j),所以,我们的递推公式是:

dp[i] = max(dp[i], dp[j] + 1)

  • dp数组的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  • 确定遍历顺序

老样子,从前到后遍历,至于j的遍历范围是~i-1,但是遍历方向都无所谓.

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

这里为什么要定义一个result呢,因为我们如果不保存结果的话,后面还得去遍历dp数组找最大,着实没必要

  • 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

CPP代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674.最长连续递增序列

力扣题目链接

文章讲解:674.最长连续递增序列

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列

状态:连续递增子序列和递增子序列区别在哪里?体现在代码中的话又在哪里呢?

来了,本题要求是连续序列,而不是原始序列派生的子序列

思路

  • 明确dp数组的含义

以下标i为结尾的最长连续递增子序列的长度为dp[i]

  • 确定递推公式

在300.最长递增子序列中,我们的dp[i]是由i面前的某个元素j来进行推导。

本题中我们求的是连续的递增子序列,所以我们没有必要去比较前面的所有元素了,在上一题中,我们可是遍历了0~i-1j

所以如果我们nums[i] > nums[i-1],我们就做对应的那个dp[i] + 1的操作,即:

dp[i]=dp[i-1]+1

  • dp数组的初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  • 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}
  • 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

CPP代码

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718.最长重复子数组

力扣题目链接

文章讲解:718.最长重复子数组

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组

本题要操作两个数组了,就是要求两个数组中最长的重复子数组长度。

这里的子数组呢其实就是连续子序列,强调的是连续

暴力解法:两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

思路

  • dp数组含义

dp[i][j] :以下标i - 1为结尾的num1,和以下标j - 1为结尾的num2,最长重复子数组长度为dp[i][j]

为什么要定义成i-1结尾和以j-1结尾呢?

其实是为了让后续代码尽可能简洁。后续的话会写如果定义成i结尾和j结尾的代码麻烦之处

  • 递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当nums[i - 1]nums2[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1

根据递推公式可以看出,遍历i 和 j 要从1开始!

if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
  • 初始化

为了使递推公式能够完成推导,dp[i][0] dp[0][j]初始化为0。

举个例子nums1[0]如果和nums2[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  • 遍历顺序

从小到大遍历即可,先遍历哪个也都是可以的,并且在遍历的过程中记录dp[i][j]的最大值

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}
  • 打印

拿nums1: [1,2,3,2,1],nums2: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

CPP代码

// 版本一
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};//滚动数组,遍历nums2的时候,要从后向前遍历,避免重复覆盖
// 版本二
class Solution {
public:int findLength(vector<int>& A, vector<int>& B) {vector<int> dp(vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = B.size(); j > 0; j--) {if (A[i - 1] == B[j - 1]) {dp[j] = dp[j - 1] + 1;} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作if (dp[j] > result) result = dp[j];}}return result;}
};

这篇关于代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957017

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)