代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

本文主要是介绍代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 300.最长递增子序列
    • 思路
    • CPP代码
  • 674.最长连续递增序列
    • 思路
    • CPP代码
  • 718.最长重复子数组
    • 思路
    • CPP代码

300.最长递增子序列

力扣题目链接

文章讲解:300.最长递增子序列

视频链接:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列

可以删除或不删除某些元素,保证数组原有的顺序,然后求最长的递增子序列。

这是典型的子序列系列,也是卡哥安排的第一个动规子序列问题。

思路

  • dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

  • 递推公式

如果j < i ,并且有nums[j] < nums[i],其中,以nums[j]结尾的最长递增子序列长度为dp[j]。以nums[i]结尾的最长递增子序列长度为dp[i]

我们应该有dp[i]=dp[j] + 1,再者,我们会遍历每一个小于i的下标j(也就是说我们会固定i,去遍历j),所以,我们的递推公式是:

dp[i] = max(dp[i], dp[j] + 1)

  • dp数组的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  • 确定遍历顺序

老样子,从前到后遍历,至于j的遍历范围是~i-1,但是遍历方向都无所谓.

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

这里为什么要定义一个result呢,因为我们如果不保存结果的话,后面还得去遍历dp数组找最大,着实没必要

  • 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

CPP代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674.最长连续递增序列

力扣题目链接

文章讲解:674.最长连续递增序列

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列

状态:连续递增子序列和递增子序列区别在哪里?体现在代码中的话又在哪里呢?

来了,本题要求是连续序列,而不是原始序列派生的子序列

思路

  • 明确dp数组的含义

以下标i为结尾的最长连续递增子序列的长度为dp[i]

  • 确定递推公式

在300.最长递增子序列中,我们的dp[i]是由i面前的某个元素j来进行推导。

本题中我们求的是连续的递增子序列,所以我们没有必要去比较前面的所有元素了,在上一题中,我们可是遍历了0~i-1j

所以如果我们nums[i] > nums[i-1],我们就做对应的那个dp[i] + 1的操作,即:

dp[i]=dp[i-1]+1

  • dp数组的初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  • 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}
  • 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

CPP代码

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718.最长重复子数组

力扣题目链接

文章讲解:718.最长重复子数组

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组

本题要操作两个数组了,就是要求两个数组中最长的重复子数组长度。

这里的子数组呢其实就是连续子序列,强调的是连续

暴力解法:两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

思路

  • dp数组含义

dp[i][j] :以下标i - 1为结尾的num1,和以下标j - 1为结尾的num2,最长重复子数组长度为dp[i][j]

为什么要定义成i-1结尾和以j-1结尾呢?

其实是为了让后续代码尽可能简洁。后续的话会写如果定义成i结尾和j结尾的代码麻烦之处

  • 递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当nums[i - 1]nums2[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1

根据递推公式可以看出,遍历i 和 j 要从1开始!

if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
  • 初始化

为了使递推公式能够完成推导,dp[i][0] dp[0][j]初始化为0。

举个例子nums1[0]如果和nums2[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  • 遍历顺序

从小到大遍历即可,先遍历哪个也都是可以的,并且在遍历的过程中记录dp[i][j]的最大值

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}
  • 打印

拿nums1: [1,2,3,2,1],nums2: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

CPP代码

// 版本一
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};//滚动数组,遍历nums2的时候,要从后向前遍历,避免重复覆盖
// 版本二
class Solution {
public:int findLength(vector<int>& A, vector<int>& B) {vector<int> dp(vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = B.size(); j > 0; j--) {if (A[i - 1] == B[j - 1]) {dp[j] = dp[j - 1] + 1;} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作if (dp[j] > result) result = dp[j];}}return result;}
};

这篇关于代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957017

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三