主流大模型测试程序-用于导出算子列表

2024-05-03 13:04

本文主要是介绍主流大模型测试程序-用于导出算子列表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主流大模型测试程序-用于导出算子列表

  • 一.参考链接
  • 二.下载链接
  • 三.测试程序
  • 四.算子列表

需要多少算子才能覆盖主流大模型呢,于是 基于__torch_dispatch__机制的dump方法 dump出算子及参数列表,考虑到设备内存容量,设置为一层

一.参考链接

  • 基于__torch_dispatch__机制的dump方法
  • python序列化、反序列化函数的参数,用于问题复现

二.下载链接

下载链接
https://huggingface.co/google-bert/bert-base-chinese
https://modelscope.cn/models/baichuan-inc/baichuan-7B/summary
https://modelscope.cn/models/baichuan-inc/Baichuan2-13B-Chat/files
https://modelscope.cn/models/ZhipuAI/ChatGLM-6B/files
https://modelscope.cn/models/ZhipuAI/chatglm2-6b/files
https://modelscope.cn/models/ZhipuAI/chatglm3-6b/files
https://modelscope.cn/models/deepseek-ai/deepseek-moe-16b-chat/files
https://modelscope.cn/models/deepseek-ai/deepseek-coder-33b-base/files
https://modelscope.cn/models/AI-ModelScope/falcon-7b-instruct/files
https://modelscope.cn/models/AI-ModelScope/gpt2/files
https://modelscope.cn/models/AI-ModelScope/gemma-7b/files
https://www.modelscope.cn/models/colossalai/grok-1-pytorch/files
https://modelscope.cn/models/CHUPer/internLM/files
https://huggingface.co/internlm/internlm2-20b/tree/main
https://modelscope.cn/models/skyline2006/llama-13b/files
https://modelscope.cn/models/Cookize/Llama-2-13B-chat/files
https://modelscope.cn/models/LLM-Research/Llama3-8B-Chinese-Chat/files
https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1/tree/main
https://huggingface.co/allenai/OLMo-7B/tree/main
https://huggingface.co/apple/OpenELM-3B/tree/main
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/tree/main
https://modelscope.cn/models/qwen/Qwen-14B-Chat/files
https://modelscope.cn/models/qwen/Qwen1.5-7B/files
https://huggingface.co/google-t5/t5-base/tree/main
https://modelscope.cn/models/xverse/XVERSE-7B/files
https://modelscope.cn/models/01ai/Yi-34B/files
https://huggingface.co/IEITYuan/Yuan2-51B-hf/tree/main

三.测试程序

import warnings 
warnings.filterwarnings("ignore")
import copy
import sys
import torch
import multiprocessing as mp
from tqdm import tqdmop_mapping={}
class llm_forward:def __init__(self,func):global op_mapping  op_mapping[func.__name__]=funcself.func=funcdef __call__(self,*args,**kwargs):return self.func(*args,**kwargs)try:from torch_hook import TorchDumper,TorchDumpDispatchMode
except:class TorchDumpDispatchMode:passclass TorchDumper:def __init__(self,*args,**kwargs):        passdef __enter__(self):passdef __exit__(self, exc_type, exc_val, exc_tb):pass@llm_forward
def bert_base_chinese(use_half,device):from transformers import AutoModelForMaskedLM,BertConfigconfig=BertConfig.from_pretrained("bert_base_chinese/config.json")config.num_hidden_layers=1model = AutoModelForMaskedLM.from_config(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_position_embeddings))with TorchDumper(TorchDumpDispatchMode,op_log_path="bert_base_chinesee.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Baichuan2_13B_Chat(use_half,device):import syssys.path.insert(0,"./Baichuan2_13B_Chat")from configuration_baichuan2 import BaichuanConfigfrom modeling_baichuan2 import BaichuanForCausalLMconfig=BaichuanConfig.from_pretrained("Baichuan2_13B_Chat/config.json")config.num_hidden_layers=1model = BaichuanForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.model_max_length//4))with TorchDumper(TorchDumpDispatchMode,op_log_path="Baichuan2_13B_Chat.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def baichuan_7B(use_half,device):import sysimport ossys.path.insert(0,os.path.join(os.getcwd(),"baichuan_7B"))from configuration_baichuan import BaiChuanConfigfrom modeling_baichuan import BaiChuanForCausalLMconfig=BaiChuanConfig.from_pretrained("baichuan_7B/config.json")config.num_hidden_layers=1model = BaiChuanForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_position_embeddings//4))with TorchDumper(TorchDumpDispatchMode,op_log_path="baichuan_7B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def ChatGLM_6B(use_half,device):import syssys.path.append("./ChatGLM_6B")from configuration_chatglm import ChatGLMConfigfrom modeling_chatglm import ChatGLMModelconfig=ChatGLMConfig.from_pretrained("ChatGLM_6B/config.json")config.num_layers=1model = ChatGLMModel(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_sequence_length))input_tokens[:,0]=config.bos_token_idinput_tokens[:,2]=config.mask_token_id  input_tokens[:,-1]=config.eos_token_idwith TorchDumper(TorchDumpDispatchMode,op_log_path="ChatGLM_6B.pkl"):output=model(input_tokens.to(device))logits=output.last_hidden_stateloss=logits.mean()-1.0loss.backward()@llm_forward
def ChatGLM2_6B(use_half,device):import syssys.path.append("./ChatGLM2_6B")from configuration_chatglm import ChatGLMConfigfrom modeling_chatglm import ChatGLMModelconfig=ChatGLMConfig.from_pretrained("ChatGLM2_6B/config.json")config.num_layers=1model = ChatGLMModel(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.padded_vocab_size,(1,config.seq_length//10))with TorchDumper(TorchDumpDispatchMode,op_log_path="ChatGLM2_6B.pkl"):output=model(input_tokens.to(device))logits=output.last_hidden_stateloss=logits.mean()-1.0loss.backward()@llm_forward
def ChatGLM3_6B(use_half,device):import syssys.path.append("./ChatGLM3_6B")from configuration_chatglm import ChatGLMConfigfrom modeling_chatglm import ChatGLMModelconfig=ChatGLMConfig.from_pretrained("ChatGLM3_6B/config.json")config.num_layers=1model = ChatGLMModel(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.padded_vocab_size,(1,config.seq_length//4))with TorchDumper(TorchDumpDispatchMode,op_log_path="ChatGLM3_6B.pkl"):output=model(input_tokens.to(device))logits=output.last_hidden_stateloss=logits.mean()-1.0loss.backward()@llm_forward
def deepseek_moe_16b_chat(use_half,device):import syssys.path.append("./deepseek_moe_16b_chat")from configuration_deepseek import DeepseekConfigfrom modeling_deepseek import DeepseekForCausalLMconfig=DeepseekConfig.from_pretrained("deepseek_moe_16b_chat/config.json")config.num_hidden_layers=1model = DeepseekForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_position_embeddings))with TorchDumper(TorchDumpDispatchMode,op_log_path="deepseek_moe_16b_chat.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def deepseek_coder_33b_base(use_half,device):from transformers.models.llama import LlamaForCausalLM, LlamaConfigconfig=LlamaConfig.from_pretrained("deepseek_coder_33b_base/config.json")config.num_hidden_layers=1model = LlamaForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_position_embeddings//10))with TorchDumper(TorchDumpDispatchMode,op_log_path="deepseek_coder_33b_base.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def falcon_7b_instruct(use_half,device):import syssys.path.append("./falcon_7b_instruct")from configuration_RW import RWConfigfrom modelling_RW import RWForCausalLMconfig=RWConfig.from_pretrained("falcon_7b_instruct/config.json")config.n_layer=1model = RWForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="falcon_7b_instruct.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def GPT2(use_half,device):from transformers import GPT2LMHeadModel, GPT2Configconfig=GPT2Config.from_pretrained("GPT2/config.json")config.n_layer=1model = GPT2LMHeadModel(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="GPT2.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def gemma_7b(use_half,device):import syssys.path.append("./gemma_7b")from config import GemmaConfigfrom model import GemmaForCausalLMconfig=GemmaConfig.from_pretrained("gemma_7b/config.json")config.num_hidden_layers=1model = GemmaForCausalLM(config)if use_half:model=model.half()model.train().to(device)max_seq_len=512batch_size=1prompt_tokens=torch.randint(0,config.vocab_size,(batch_size,max_seq_len)).to(device)temperature= 0.95top_p  = 1.0top_k = 100# build KV cacheskv_caches = []for _ in range(config.num_hidden_layers):size = (batch_size, max_seq_len, config.num_key_value_heads,config.head_dim)dtype = config.get_dtype()k_cache = torch.zeros(size=size, dtype=dtype).to(device)v_cache = torch.zeros(size=size, dtype=dtype).to(device)kv_caches.append((k_cache, v_cache))# prepare inputsinput_token_ids_tensor = torch.full((batch_size, max_seq_len),0,dtype=torch.int64)input_token_ids_tensor = input_token_ids_tensor.to(device)input_positions_tensor = torch.arange(0, max_seq_len,dtype=torch.int64).to(device)mask_tensor = torch.full((1, 1, max_seq_len, max_seq_len),-2.3819763e38).to(torch.float)mask_tensor = torch.triu(mask_tensor, diagonal=1).to(device)output_positions_tensor = torch.LongTensor([max_seq_len - 1]).to(device)temperatures_tensor = None if not temperature else torch.FloatTensor([temperature] * batch_size).to(device)top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)with TorchDumper(TorchDumpDispatchMode,op_log_path="gemma_7b.pkl"):output=model(prompt_tokens,input_positions_tensor,None,kv_caches,mask_tensor,output_positions_tensor,temperatures_tensor,top_ps_tensor,top_ks_tensor)_,logits=outputloss=logits.mean()-1.0loss.backward()@llm_forward
def grok1_pytorch(use_half,device):import syssys.path.append("./grok1_pytorch")from configuration_grok1 import Grok1Configfrom modeling_grok1 import Grok1ModelForCausalLMconfig=Grok1Config.from_pretrained("grok1_pytorch/config.json")config.num_hidden_layers=1config.num_experts=1config.num_experts_per_tok=1model = Grok1ModelForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="grok1_pytorch.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def internLM(use_half,device):import syssys.path.append("./internLM")from configuration_internlm import InternLMConfigfrom modeling_internlm import InternLMForCausalLMconfig=InternLMConfig.from_pretrained("internLM/config.json")config.num_hidden_layers=1model = InternLMForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="internLM.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def internlm2_20b(use_half,device):import syssys.path.append("./internlm2_20b")from configuration_internlm2 import InternLM2Configfrom modeling_internlm2 import InternLM2ForCausalLMconfig=InternLM2Config.from_pretrained("internlm2_20b/config.json")config.num_hidden_layers=1model = InternLM2ForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="internlm2_20b.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def llama_13b(use_half,device):from transformers.models.llama import LlamaForCausalLM, LlamaConfigconfig=LlamaConfig.from_pretrained("llama_13b/config.json")config.num_hidden_layers=1model = LlamaForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_sequence_length))with TorchDumper(TorchDumpDispatchMode,op_log_path="llama_13b.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Llama2_13B_chat(use_half,device):from transformers.models.llama import LlamaForCausalLM, LlamaConfigconfig=LlamaConfig.from_pretrained("Llama2_13B_chat/config.json")config.num_hidden_layers=1model = LlamaForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,128))with TorchDumper(TorchDumpDispatchMode,op_log_path="Llama2_13B_chat.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Llama3_8B_Chinese_Chat(use_half,device):from transformers.models.llama import LlamaForCausalLM, LlamaConfigconfig=LlamaConfig.from_pretrained("Llama3_8B_Chinese_Chat/config.json")config.num_hidden_layers=1model = LlamaForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,128))with TorchDumper(TorchDumpDispatchMode,op_log_path="Llama3_8B_Chinese_Chat.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Mixtral_8x22B(use_half,device):import syssys.path.append("./Mixtral_8x22B")from configuration_mixtral import MixtralConfigfrom modeling_mixtral import MixtralForCausalLMconfig=MixtralConfig.from_pretrained("Mixtral_8x22B/config.json")config.num_hidden_layers=1model = MixtralForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="Mixtral_8x22B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def OLMo_7B(use_half,device):import syssys.path.append("./OLMo_7B")from configuration_olmo import OLMoConfigfrom modeling_olmo import OLMoForCausalLMconfig=OLMoConfig.from_pretrained("OLMo_7B/config.json")config.n_layers=1model = OLMoForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="OLMo_7B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Phi3_mini_4k_instruct(use_half,device):import syssys.path.append("./Phi3_mini_4k_instruct")from configuration_phi3 import Phi3Configfrom modeling_phi3 import Phi3ForCausalLMconfig=Phi3Config.from_pretrained("Phi3_mini_4k_instruct/config.json")config.num_hidden_layers=1model = Phi3ForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="Phi3_mini_4k_instruct.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def OpenELM_3B(use_half,device):import syssys.path.append("./OpenELM_3B")from configuration_openelm import OpenELMConfigfrom modeling_openelm import OpenELMForCausalLMconfig=OpenELMConfig.from_pretrained("OpenELM_3B/config.json")config.num_transformer_layers=1model = OpenELMForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="OpenELM_3B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Qwen_14B_Chat(use_half,device):import syssys.path.append("./Qwen_14B_Chat")from configuration_qwen import QWenConfigfrom modeling_qwen import QWenLMHeadModelconfig=QWenConfig.from_pretrained("Qwen_14B_Chat/config.json")config.num_hidden_layers=1model = QWenLMHeadModel(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="Qwen_14B_Chat.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Qwen1_5_7B(use_half,device):import syssys.path.append("./Qwen1_5_7B")from configuration_qwen2 import Qwen2Configfrom modeling_qwen2 import Qwen2ForCausalLMconfig=Qwen2Config.from_pretrained("Qwen1_5_7B/config.json")config.num_hidden_layers=1model = Qwen2ForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="Qwen1_5_7B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def t5_base(use_half,device):import syssys.path.append("./t5_base")from transformers import T5Config, T5ForConditionalGenerationconfig=T5Config.from_pretrained("t5_base/config.json")config.num_layers=1config.max_new_tokens=512model = T5ForConditionalGeneration(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_new_tokens))with TorchDumper(TorchDumpDispatchMode,op_log_path="t5_base.pkl"):output=model.generate(input_tokens.to(device))#logits=output#loss=logits.mean()-1.0#loss.backward()@llm_forward
def XVERSE_7B(use_half,device):import syssys.path.append("./XVERSE_7B")from configuration_xverse import XverseConfigfrom modeling_xverse import XverseForCausalLMconfig=XverseConfig.from_pretrained("XVERSE_7B/config.json")config.num_hidden_layers=1model = XverseForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,512))with TorchDumper(TorchDumpDispatchMode,op_log_path="XVERSE_7B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Yi_34B(use_half,device):from transformers.models.llama import LlamaForCausalLM, LlamaConfigconfig=LlamaConfig.from_pretrained("Yi_34B/config.json")config.num_hidden_layers=1model = LlamaForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,config.max_position_embeddings//10))with TorchDumper(TorchDumpDispatchMode,op_log_path="Yi_34B.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()@llm_forward
def Yuan2_51B_hf(use_half,device):import syssys.path.append("./Yuan2_51B_hf")from configuration_yuan import YuanConfigfrom yuan_hf_model import YuanForCausalLMconfig=YuanConfig.from_pretrained("Yuan2_51B_hf/config.json")config.num_hidden_layers=1config.intermediate_size=2048config.model_max_length=config.max_position_embeddings=2model = YuanForCausalLM(config)if use_half:model=model.half()model.train().to(device)input_tokens=torch.randint(0,config.vocab_size,(1,2))with TorchDumper(TorchDumpDispatchMode,op_log_path="Yuan2_51B_hf.pkl"):output=model(input_tokens.to(device))logits=output.logitsloss=logits.mean()-1.0loss.backward()def main():global op_mappingdevice="cuda"use_half=Truepbar=tqdm(list(op_mapping.keys()))for name in pbar:        torch.manual_seed(1)p = mp.Process(target=op_mapping[name],args=(use_half,device))p.start()p.join()torch.cuda.empty_cache()pbar.set_description("%s" % (name))if __name__=='__main__':main()

四.算子列表

算子列表
aten.abs.default
aten.addmm.default
aten.add.Tensor
aten.add_.Tensor
aten.alias.default
aten.all.default
aten.any.default
aten.arange.default
aten.arange.start
aten.arange.start_step
aten.argmax.default
aten.as_strided.default
aten.baddbmm.default
aten.bitwise_not.default
aten.bitwise_or.Tensor
aten.bmm.default
aten.cat.default
aten.clamp_min.default
aten.clamp.Tensor
aten.clone.default
aten._conj.default
aten.convolution_backward.default
aten.convolution.default
aten.copy_.default
aten.cos.default
aten.cumsum.default
aten.diagonal_copy.default
aten.div.Scalar
aten.div.Tensor
aten.div_.Tensor
aten.embedding.default
aten.embedding_dense_backward.default
aten.empty.memory_format
aten.empty.names
aten.eq.Scalar
aten.eq.Tensor
aten.expand.default
aten.fill_.Scalar
aten.fill_.Tensor
aten.full.default
aten.full_like.default
aten.gather.default
aten.gelu_backward.default
aten.gelu.default
aten.ge.Scalar
aten.ge.Tensor
aten.gt.Scalar
aten.gt.Tensor
aten.index_add_.default
aten.index_copy_.default
aten.index_put.default
aten.index_select.default
aten.index.Tensor
aten.isinf.default
aten.is_same_size.default
aten.le.Tensor
aten.lift_fresh.default
aten.linalg_vector_norm.default
aten._local_scalar_dense.default
aten.log.default
aten.logical_not.default
aten.lt.Scalar
aten.lt.Tensor
aten.masked_fill.Scalar
aten.masked_fill_.Scalar
aten.max.default
aten.maximum.default
aten.mean.default
aten.mean.dim
aten.minimum.default
aten.mm.default
aten.mul.Scalar
aten.mul.Tensor
aten.multinomial.default
aten.native_dropout_backward.default
aten.native_dropout.default
aten.native_layer_norm_backward.default
aten.native_layer_norm.default
aten.neg.default
aten.ne.Tensor
aten.new_empty.default
aten.new_empty_strided.default
aten.new_zeros.default
aten.nonzero.default
aten.ones.default
aten.ones_like.default
aten.permute.default
aten.pow.Scalar
aten.pow.Tensor_Scalar
aten.prod.dim_int
aten.reciprocal.default
aten.relu.default
aten.repeat.default
aten.rsqrt.default
aten.rsub.Scalar
aten.scalar_tensor.default
aten._scaled_dot_product_efficient_attention_backward.default
aten._scaled_dot_product_efficient_attention.default
aten.scatter.src
aten.scatter_.value
aten.select_backward.default
aten.select.int
aten.set_.source_Storage
aten.set_.source_Storage_storage_offset
aten.silu_backward.default
aten.silu.default
aten.sin.default
aten.slice_backward.default
aten.slice.Tensor
aten._softmax_backward_data.default
aten._softmax.default
aten.sort.default
aten.split.Tensor
aten.split_with_sizes.default
aten.squeeze.dim
aten.stack.default
aten.sub.Tensor
aten.sum.dim_IntList
aten.tanh_backward.default
aten.tanh.default
aten.t.default
aten._to_copy.default
aten.topk.default
aten.transpose.int
aten.tril.default
aten.tril_.default
aten.triu.default
aten.unbind.int
aten._unsafe_view.default
aten.unsqueeze.default
aten.unsqueeze_.default
aten.view_as_complex.default
aten.view_as_real.default
aten.view.default
aten.where.self
aten.zeros.default
aten.zeros_like.default

这篇关于主流大模型测试程序-用于导出算子列表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956812

相关文章

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3