数据分析:基于DESeq2的转录组功能富集分析

2024-05-03 08:20

本文主要是介绍数据分析:基于DESeq2的转录组功能富集分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

DESeq2常用于识别差异基因,它主要使用了标准化因子标准化数据,再根据广义线性模型判别组间差异(组间残差是否显著判断)。在获取差异基因结果后,我们可以进行下一步的富集分析,常用方法有基于在线网站DAVID以及脚本处理的两类,本文介绍基于fgsea的方法计算富集分析得分。

DESeq2差异分析

了解DESeq2如何标准化数据和识别差异基因。下面给出简要代码

library(DESeq2)
library(airway)
data("airway")
ddsSE <- DESeqDataSet(airway, design = ~ cell + dex)
ddsSE <- DESeq(ddsSE)
res <- results(ddsSE, tidy = TRUE) %>% na.omit() %>% as_tibble()head(res)
# A tibble: 6 x 7row             baseMean log2FoldChange  lfcSE   stat     pvalue      padj<chr>              <dbl>          <dbl>  <dbl>  <dbl>      <dbl>     <dbl>
1 ENSG00000000003    709.          0.381  0.101   3.79  0.000152   0.00128  
2 ENSG00000000419    520.         -0.207  0.112  -1.84  0.0653     0.197    
3 ENSG00000000457    237.         -0.0379 0.143  -0.264 0.792      0.911    
4 ENSG00000000460     57.9         0.0882 0.287   0.307 0.759      0.895    
5 ENSG00000000971   5817.         -0.426  0.0883 -4.83  0.00000138 0.0000182
6 ENSG00000001036   1282.          0.241  0.0887  2.72  0.00658    0.0328 

转换geneID

我们使用的MSigDB数据库的pathway 基因ID只有entrez和HGNC symbol两类,如果是ensemble id,需要转换。

library(org.Hs.eg.db)
library(tidyverse)
ens2symbol <- AnnotationDbi::select(org.Hs.eg.db,key=res$row, columns="SYMBOL",keytype="ENSEMBL")
ens2symbol <- as_tibble(ens2symbol)
head(ens2symbol)
# A tibble: 6 x 2ENSEMBL         SYMBOL  <chr>           <chr>   
1 ENSG00000000003 TSPAN6  
2 ENSG00000000419 DPM1    
3 ENSG00000000457 SCYL3   
4 ENSG00000000460 C1orf112
5 ENSG00000000971 CFH     
6 ENSG00000001036 FUCA2 
  • 合并数据;过滤NA值;去重;重复基因求stat(stat数据作为排序指标用于后续富集分析)
res2 <- inner_join(res, ens2symbol, by=c("row"="ENSEMBL")) %>% dplyr::select(SYMBOL, stat) %>% na.omit() %>% distinct() %>% group_by(SYMBOL) %>% summarize(stat=mean(stat))
head(res2 )
# A tibble: 6 x 2SYMBOL       stat<chr>       <dbl>
1 A1BG      0.680  
2 A1BG-AS1 -1.79   
3 A2M      -1.26   
4 A2M-AS1   0.875  
5 A4GALT   -4.14   
6 A4GNT     0.00777

构建fgsea输入数据

  • 基因排序值转换
library(fgsea)ranks <- deframe(res2)
head(ranks, 20)
        A1BG     A1BG-AS1          A2M      A2M-AS1       A4GALT        A4GNT         AAAS         AACS 0.679946437 -1.793291412 -1.259539478  0.875346116 -4.144839902  0.007772497  0.163986128  1.416071728 AADACL4        AADAT        AAGAB         AAK1        AAMDC         AAMP         AAR2        AARS1 
-1.876311694  3.079128034  1.554279946  1.141522348 -2.147527241 -3.170612332 -2.364380163  4.495474603 AARS2       AARSD1        AASDH     AASDHPPT 5.057470292  0.654208006  0.665531695 -0.353496148 
  • pathways的基因集合,上MSigDB下载基因集。演示使用KEGG基因集
pathways.hallmark <- gmtPathways("../../Result/GeneID/msigdb.v7.1.symbols_KEGG.gmt")
pathways.hallmark %>% head() %>% lapply(head)
$KEGG_GLYCOLYSIS_GLUCONEOGENESIS
[1] "ACSS2" "GCK"   "PGK2"  "PGK1"  "PDHB"  "PDHA1"$KEGG_CITRATE_CYCLE_TCA_CYCLE
[1] "IDH3B" "DLST"  "PCK2"  "CS"    "PDHB"  "PCK1" $KEGG_PENTOSE_PHOSPHATE_PATHWAY
[1] "RPE"   "RPIA"  "PGM2"  "PGLS"  "PRPS2" "FBP2" $KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
[1] "UGT1A10" "UGT1A8"  "RPE"     "UGT1A7"  "UGT1A6"  "UGT2B28"$KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM
[1] "MPI"  "PMM2" "PMM1" "FBP2" "PFKM" "GMDS"$KEGG_GALACTOSE_METABOLISM
[1] "GCK"     "GALK1"   "GLB1"    "GALE"    "B4GALT1" "PGM2"
  • 运行
fgseaRes <- fgsea(pathways=pathways.hallmark, stats=ranks, nperm=1000)
head(fgseaRes[order(pval), ])
  • 从查看KEGG_REGULATION_OF_ACTIN_CYTOSKELETON富集分数分布
plotEnrichment(pathways.hallmark[["KEGG_REGULATION_OF_ACTIN_CYTOSKELETON"]],ranks) + labs(title="KEGG_REGULATION_OF_ACTIN_CYTOSKELETON")

  • 查看上下调通路结果
topPathwaysUp <- fgseaRes[ES > 0][head(order(pval), n=10), pathway]
topPathwaysDown <- fgseaRes[ES < 0][head(order(pval), n=10), pathway]
topPathways <- c(topPathwaysUp, rev(topPathwaysDown))
plotGseaTable(pathways.hallmark[topPathways], ranks, fgseaRes, gseaParam=0.5)

  • 其他展示方式
fgseaResTidy <- fgseaRes %>%as_tibble() %>%arrange(desc(NES))# Show in a nice table:
fgseaResTidy %>% dplyr::select(-leadingEdge, -ES, -nMoreExtreme) %>% arrange(padj) %>% DT::datatable()ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) +geom_col(aes(fill = padj<0.0001)) +coord_flip() +labs(x="Pathway", y="Normalized Enrichment Score",title="Hallmark pathways NES from GSEA") + theme_minimal()

查看通路的基因

res_temp <- inner_join(res, ens2symbol, by=c("row"="ENSEMBL"))
pathways.hallmark %>% enframe("pathway", "SYMBOL") %>% unnest(cols = c(SYMBOL)) %>% inner_join(res_temp , by="SYMBOL") %>%head()
# A tibble: 6 x 9pathway                         SYMBOL row             baseMean log2FoldChange lfcSE   stat pvalue   padj<chr>                           <chr>  <chr>              <dbl>          <dbl> <dbl>  <dbl>  <dbl>  <dbl>
1 KEGG_GLYCOLYSIS_GLUCONEOGENESIS ACSS2  ENSG00000131069    669.         -0.269  0.114 -2.35  0.0188 0.0756
2 KEGG_GLYCOLYSIS_GLUCONEOGENESIS GCK    ENSG00000106633     28.8         0.305  0.374  0.815 0.415  0.662 
3 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PGK1   ENSG00000102144   7879.         -0.300  0.353 -0.850 0.395  0.642 
4 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PDHB   ENSG00000168291    648.         -0.257  0.102 -2.52  0.0117 0.0521
5 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PDHA1  ENSG00000131828    651.         -0.0744 0.104 -0.715 0.475  0.710 
6 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PGM2   ENSG00000169299    302.         -0.315  0.136 -2.33  0.0201 0.0797

其他用法

  • miR targets
fgsea(pathways=gmtPathways("msigdb/c3.mir.v6.2.symbols.gmt"), ranks, nperm=1000) %>% as_tibble() %>% arrange(padj)
  • GO annotations
fgsea(pathways=gmtPathways("msigdb/c5.all.v6.2.symbols.gmt"), ranks, nperm=1000) %>% as_tibble() %>% arrange(padj)
  • 非人物种
library(biomaRt)
mart <- useDataset("mmusculus_gene_ensembl", mart=useMart("ensembl"))
bm <- getBM(attributes=c("ensembl_gene_id", "hsapiens_homolog_associated_gene_name"), mart=mart) %>%distinct() %>%as_tibble() %>%na_if("") %>% na.omit()
bm

参考

  1. Fast Gene Set Enrichment Analysis

  2. DESeq results to pathways in 60 Seconds with the fgsea package

这篇关于数据分析:基于DESeq2的转录组功能富集分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956275

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文