Spark_Hive 累加统计函数 sum() over()

2024-05-03 06:08
文章标签 统计 函数 累加 hive sum spark

本文主要是介绍Spark_Hive 累加统计函数 sum() over(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数

1 应用场景:

1、我们需要统计用户的总使用时长(累加历史)

2、前台展现页面需要对多个维度进行查询,如:产品、地区等等

3、需要展现的表格头如: 产品、2015-04、2015-05、2015-06

2 原始数据:

product_codeevent_dateduration
14382016-05-13165
14382016-05-14595
14382016-05-15105
16292016-05-1312340
16292016-05-1413850
16292016-05-15227

3 业务场景实现

3.1 业务场景1:累加历史:

如数据源所示:我们已经有当天用户的使用时长,我们期望在进行统计的时候,14号能累加13号的,15号能累加14、13号的,以此类推

3.1.1 spark-sql实现

//spark sql 使用窗口函数累加历史数据

sqlContext.sql(
"""select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_durationfrom userlogs_date
""").show
+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.1.2 dataframe实现

//使用Column提供的over 函数,传入窗口操作
import org.apache.spark.sql.expressions._
val first_2_now_window = Window.partitionBy("pcode").orderBy("event_date")
df_userlogs_date.select($"pcode",$"event_date",sum($"duration").over(first_2_now_window).as("sum_duration")
).show+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.1.3 扩展 累加一段时间范围内

实际业务中的累加逻辑远比上面复杂,比如,累加之前N天,累加前N天到后N天等等。以下我们来实现:

3.1.3.1 累加历史所有:

select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc) as sum_duration from userlogs_date
select pcode,event_date,sum(duration) over (partition by pcode order by event_date asc rows between unbounded preceding and current row) as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(Long.MinValue,0)
Window.partitionBy("pcode").orderBy("event_date")

上边四种写法完全相等

3.1.3.2 累加N天之前,假设N=3

//如果,不想要分区,想从每月的第一天累加的当前天 可以去掉partition
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 3 preceding and current row) as sum_durationfrom userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,0) 

3.1.3.3 累加前N天,后M天: 假设N=3 M=5

select pcode,event_date,sum(duration) over (partition by pcode order byevent_date asc rows between 3 preceding and 5 following ) as sum_durationfrom userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween(-3,5)

3.1.3.4 累加该分区内所有行

select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and unbounded following ) 
as sum_duration from userlogs_date
Window.partitionBy("pcode").orderBy("event_date").rowsBetween
(Long.MinValue,Long.MaxValue)

总结如下:
preceding:用于累加前N行(分区之内)。若是从分区第一行头开始,则为 unbounded。 N为:相对当前行向前的偏移量
following :与preceding相反,累加后N行(分区之内)。若是累加到该分区结束,则为 unbounded。N为:相对当前行向后的偏移量
current row:顾名思义,当前行,偏移量为0
说明:上边的前N,后M,以及current row均会累加该偏移量所在行

3.1.3.4 实测结果

累加历史:分区内当天及之前所有 写法
1:select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc) as sum_duration from userlogs_date+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+
累加历史:分区内当天及之前所有 写法2:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and current row) as 
sum_duration from userlogs_date+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       26417|
+-----+----------+------------+
累加当日和昨天:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 1 preceding and current row) as sum_durationfrom userlogs_date+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         760|
| 1438|2016-05-15|         700|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       26190|
| 1629|2016-05-15|       14077|
+-----+----------+------------+
累加当日、昨日、明日:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between 1 preceding and 1 following ) as sum_durationfrom userlogs_date+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         760|
| 1438|2016-05-14|         865|
| 1438|2016-05-15|         700|
| 1629|2016-05-13|       26190|
| 1629|2016-05-14|       26417|
| 1629|2016-05-15|       14077|
+-----+----------+------------+

累加分区内所有:当天和之前之后所有:
select pcode,event_date,sum(duration) over (partition by pcode order by 
event_date asc rows between unbounded preceding and unbounded following )as sum_duration from userlogs_date+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| 1438|2016-05-13|         865|
| 1438|2016-05-14|         865|
| 1438|2016-05-15|         865|
| 1629|2016-05-13|       26417|
| 1629|2016-05-14|       26417|
| 1629|2016-05-15|       26417|
+-----+----------+------------+

3.2 业务场景2:统计全部3.2.1 spark sql实现//spark sql 使用rollup添加all统计
sqlContext.sql(
"""select pcode,event_date,sum(duration) as sum_durationfrom userlogs_date_1group by pcode,event_date with rolluporder by pcode,event_date
""").show()+-----+----------+------------+                                                 
|pcode|event_date|sum_duration|
+-----+----------+------------+
| null|      null|       27282|
| 1438|      null|         865|
| 1438|2016-05-13|         165|
| 1438|2016-05-14|         595|
| 1438|2016-05-15|         105|
| 1629|      null|       26417|
| 1629|2016-05-13|       12340|
| 1629|2016-05-14|       13850|
| 1629|2016-05-15|         227|
+-----+----------+------------

这篇关于Spark_Hive 累加统计函数 sum() over()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955992

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N